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ABSTRACT
Though there are numerous traditional models to predict market
share and demand along airline routes, the prediction of existing
models is not precise enough and, to the best of our knowledge,
there is no use of data-mining based forecasting techniques to im-
prove airline profitability. We propose the MAP (Maximizing Air-
line Profits) architecture designed to help airlines and make two key
contributions in airline market share and route demand prediction
and prediction-based airline profit optimization. Compared with
past methods to forecast market share and demand along airline
routes, we introduce a novel Ensemble Forecasting (MAP-EF) ap-
proach considering two new classes of features: (i) features derived
from clusters of similar routes, and (ii) features based on equilibri-
um pricing. We show that MAP-EF achieves much better Pearson
Correlation Coefficients (over 0.95 vs. 0.82 for market share, 0.98
vs. 0.77 for demand) and R2-values compared with three state-
of-the-art works for forecasting market share and demand, while
showing much lower variance. Using the results of MAP-EF, we
develop MAP-Bilevel Branch and Bound (MAP-BBB) and MAP-
Greedy (MAP-G) algorithms to optimally allocate flight frequen-
cies over multiple routes, to maximize an airline’s profit. Experi-
mental results show that airlines can increase profits by a signifi-
cant margin. All experiments were conducted with data aggregated
from four sources: US Bureau of Transportation Statistics (BTS),
US Bureau of Economic Analysis (BEA), the National Transporta-
tion Safety Board (NTSB), and the US Census Bureau (CB).
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1. INTRODUCTION
Since the deregulation of US airlines in 1978, there has been

intense competition amongst airlines for market share and, eventu-
ally, profitability. While there is considerable work on predicting
market share and demand along airline routes, the prediction of ex-
isting models is not precise enough and, to the best of our knowl-
edge, there is no use of data-mining based forecasting techniques to
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improve airline profitability. In this paper, we formally define the
MAP problem by allowing airlines to decide the flight frequencies
on their flying routes in order to maximize their profits, subject to
cost constraints. For instance, if there is a set R of routes in the
world, and the airline can fly up to n routes where n ≤ |R|, then
our MAP problem would capture both route selection (which routes
to fly) and frequency1.

The first key contribution of this paper is a precise route-specific
prediction of both total demand of an origin-destination market and
an airline’s market share. Existing related works only use simple
regression methods and focus on a limited number of variables. Our
studies of three major route market share [16, 24, 26] and demand
prediction [6, 8, 9] methods show that the Pearson Correlation Co-
efficients between the predicted values and the actual values are a
max of 0.82 (for one market share method) and 0.77 (for one de-
mand model). Other existing models predict much lower numbers.
Although one of these regression methods [16] outputs satisfactory
prediction results in our experiments, there is still a gap between
the prediction and the real value. The relatively “small” predic-
tion gap can lead to a huge revenue loss if airlines make decisions
based on the prediction. Worse still, due to the inflexibility of ex-
isting models, the prediction gap can be large for some routes. We
propose a new ensemble-based prediction method for forecasting
total demand and market share, which uses an extensive number of
features and several state-of-the-art clustering and regression algo-
rithms that have never been adopted for MAP. The new ensemble
method builds upon existing models, but also collects several new
features, together with novel clustering and game theoretic meth-
ods. We are the first to propose a prediction method, for a broad set
of routes (around 700 - past works stopped at 200), which considers
the predictions of both total demand (demand generation) of a route
and market share (demand allocation) of each airline operating in
that route (13 airlines in total).

The second key contribution is two novel algorithms for solving
MAP, which becomes computationally intractable with brute-force
search when the number of routes is large. This is because: 1) the
solution space is exponential w.r.t. the number of routes, 2) the
profit-frequency function, which is generated by our proposed pre-
diction method, is neither convex nor concave (and thus not linear).
We show in Section 2 that MAP belongs to the hardest subclass
of Knapsack Problems (KPs) and Resource Allocation Problems
(RAPs), and despite a vast amount of existing works [11, 12, 20,
21] for both KPs and RAPs, all previous algorithms fail to solve it

1Because the airline industry is very complex, it is difficult to mod-
el all other sources of profit that might be available (e.g., in-flight
sales, baggage fees, etc.) to the airline, especially as such data is
not freely available.



efficiently. Based on predictions made by MAP-EF, we come up
with two optimization algorithms to solve the raised profit maxi-
mization problem. We present an exact algorithm to solve MAP
based on a novel Bilevel-Branch and Bound approach (MAP-BBB)
that computes the true optimal solution, as well as a Greedy algo-
rithm (MAP-G) that more quickly computes suboptimal solutions.

Third, we conduct extensive experimental evaluations to com-
pare MAP’s prediction results with those of past works. We show
that past prediction models are significantly “beaten” by MAP, which
increases these predictive accuracies to over 0.95, while significant-
ly reducing the variance in our prediction error compared with past
works. We also compare both the optimality and scalability of our
proposed profit maximization algorithms with several benchmarks.
The result shows that our predictions are far superior to past effort-
s. Moreover, by using MAP, an airline can averagely increase its
profit by at least 55% under mild conditions.2

The rest of this paper is organized as follows. Section 2 intro-
duces related works. Section 3 discusses the data set used in our
study. Section 4 shows our proposed prediction framework based
on our ensemble method. Section 5 presents our proposed algo-
rithms for the profit maximization problem. Section 6 conducts
extensive experimental evaluations. For notational convenience,
Table 1 summarizes all the notations used in this paper.

2. RELATED WORK
Existing airline market share and demand prediction models try

to write down math formulas for market share/demand and then
use regression to find values of the parameters in these formulas
that minimize the sum of the squared errors between the predicted
values and the true values. We therefore call these math models to
indicate that the structural form of these models is written down a
priori without reference to any data and that the parameter values
that minimize error are then computed using available data.
Airline market share prediction. Most works on airline market
share prediction use a multinomial logit (MNL) regression model
[16, 24, 26]. For a setA of airlines in a given route, an airline Ai’s
market share mi is modeled as:

mi =
eVi∑

Aj∈A e
Vj
. (1)

Here Vi =
∑
k ηkXik is the customer’s utility for choosing airline

Ai’s service, Xik is the value of the kth variable for airline Ai
and ηk is its corresponding weight to be learnt from data. Various
variables have been studied. In Market1 [16], the authors consider
a route’s price, frequency, and the number of stops. Based on the
prediction, they analyze competition among airlines. Market2 [24]
considers an airline’s frequency, delay, and safety. Market3 [26]
studies the effect of aircraft size and seat availability on market
share and considers other variables such as price and frequency.

Total demand prediction. For total demand of a route, a multi-
plicative [6, 8, 9] regression model is the most frequently adopted.
Formally, a route’s total demand is represented as:

d =
∏
k

Y
λk
k , (2)

where Yk is a value of the kth variable and λk is a parameter to be
learnt from data which measures the importance of Yk. Demand1

2Like all past models, our analysis of airline profits is only based
on publicly available data, so the true number might be smaller.
Nevertheless, even a 10% improvement in the real-world would be
substantial.

Table 1: Summary of Notations

A a set of airlines
Ai ith airline ofA
R a set of routes
Ri ith route ofR

Symbols related to predict market share of routeR
Xik the value of the kth variable, e.g., price, of airlineAi

ηk the weight ofXik

Vi airlineAi’s customer utility inR
mi market share of airlineAi inR

Symbols related to predict demand of routeR
Yk the value of the kth variable, e.g., population
λk the exponent of Yk

d total demand (the number of passengers) of routeR
Symbols related to calculate Nash Equilibrium of routeR

pi average ticket price ofAi for routeR
cpsgi unit passenger related cost ofAi in routeR
N(Ai) utility (profit) ofAi in routeR

Symbols related to Profit Maximization of airlineA
Ci per flight cost of routeRi for a given airlineA
fi flight frequency of routeRi for a given airlineA

ri(fi) revenue whenA operates fi flights on routeRi

Ni(fi) profit (revenue minus total cost) whenA operates fi flights on routeRi

〈fi〉 frequency strategy for all routes inR of airlineA
〈f∗

i 〉 optimal frequency strategy of airlineA
N(〈fi〉) profit of frequency strategy 〈fi〉

b budget limit of the Profit Maximization problem
K the number of routes to optimize profit of airline

Symbols related to MAP-BBB in Algorithm 2
np parent node
c child node

cl, cr left and right children of a parent node
N∗ optimal profit sought by the algorithm

MaxLB bounding threshold
UBc, LBc lower bound and upper bound profit of node c

Cc lower bound cost of node c
Symbols related to MAP-G in Algorithm 3

g a group of route
q the number of routes in a group g
G a set of route groups,R is divided into |G| groups
δ budget allocation unit
〈f∗

g 〉 optimal frequency strategy of group g

[6] considers wealth related variables such as price, income and
CPI (consumer price index). Demand2 [9] studies the influence
of demographic variables such as price, income and population, as
well as hub status (i.e., large, medium, small or non-hub) on pas-
senger demand. Demand3 [8] focuses on variables such as price,
income, population and origin-destination distance.

In this paper, we show that our prediction models build on all of
these methods, but use an ensemble approach to achieve not only
much higher predictive accuracy, but also much greater robustness.

KPs and RAPs. Airline profit maximization through optimal fre-
quency allocation over multiple routes, given a certain budget con-
straint, belongs to the family of KPs and RAPs, which have been
extensively studied ever since the work of Dantzig [13] in 1957.
While all variants of KPs are known to be NP-hard, MAP, which
has bounded integer variables, and a non-concave (arbitrary) objec-
tive function, is notoriously hard [11].

There are some Polynomial Time Approximate Schemes (PTAS)
and even Fully-PTAS to solve bounded knapsack problems (BKP-
s), using greedy algorithms [17], dynamic programming [21] and
branch and bound [19]. The first two methods assume linear ob-
jective functions, while the last approach uses linear relaxation.
Several algorithms have been proposed to solve KPs/RAPs with
non-linear objective functions, especially for a concave and non-
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Figure 1: Quarterly revenue (dashed lines) and profit (solid lines)
in 10 million dollars generated by MAP-EF. Revenue is defined
as average ticket price multiplied by the number of passenger-
s. Cost is per flight cost multiplied by frequency. Note that the
profit-frequency curve (revenue minus cost) is very irregular even
though the revenue-frequency curve is monotonically increasing.
The shapes of the curves are quite different.

decreasing objective function [11]. The common idea is to de-
compose the original objective function into a set of approximat-
ed piecewise linear functions. Unfortunately, none of these works
for our problem. This is because the profit-frequency function in
our problem is neither concave nor convex (thus not linear), varies
from one route to another, and cannot be described by a simple
math formula but by a series of clustering, regression, and other
types of functions3. As shown in Figure 1 where the x-axis is the
frequency and the y-axis is the profit (or revenue), the two graphs
are for two routes (SFO-LAX route on the left and JFK-LAX route
on the right) and 4 major US airlines. We see that the shapes of the
curve on the left (SFO-LAX) is quite different from another on the
right (JFK-LAX). In fact, across the 700 routes we studied, there
was huge variation in the actual profit/revenue curves. Thus, any
method specially devised for a certain form of objective functions
(e.g., linear, concave or convex) cannot be applied.

Optimal decision making based on data-mining. Data-mining
based optimization has been implemented by many existing KDD
papers, including optimal bidding [28, 29], smart pacing [27] and
optimal recommendation systems [18]. In the first step of these
works, a predicted objective function is learned using regression
analysis techniques. Based on the prediction results, an optimiza-
tion problem is solved, either analytically [18, 28] or via optimiza-
tion algorithms [27, 29]. While our MAP framework follows this
general scheme, it differs in many ways, including the fact that the
predicted objective function is in a very complicated linear algebra
form.

3. THE MAP DATASET
We have created an integrated “MAP” data set by aggregating

information from 4 publicly available data sources, viz. the Bu-
reau of Transportation Statistics (BTS) [3], the Bureau of Econom-
ic Analysis (BEA) [2], the National Transportation Safety Board
(NTSB) [4], and the U.S. Census Bureau (Census) [5]. BTS pro-
vides almost all aspects of airline market information such as tick-
et price4, frequency, number of stops, delay records, aircraft size
and available seats. The BEA and the Census release regional in-
come, economic state, and population information while the NTSB
provides all safety and accident related information. The BTS pro-
vides a quarterly dataset. A detailed description of the variables
we consider is presented in Table 2. We plan to publicly release
our tools and data set in 2016. Our training data includes 10 years
3We will revisit this point after Definition 5.2.
4BTS releases a 10% sample of route and airline specific ticket
sales logs, from which average ticket price is obtained.

Figure 2: Structure of the MAP-EF prediction model. Rectangles
mean data and elipses algorithms. Each algorithm is marked with
a processing sequence number. Solid lines mean inputs and dashed
lines outputs.

(40 quarters) of data on 13 airlines and 700 routes. Our validation
data includes one quarter (all 700 routes and 13 airlines’ market
share and profits are predicted, leading to a total 9100 prediction-
s in total). This is consistent with most corporate forecasts where
forecasts are made for the next quarter5.

Table 2: Variables used to make predictions by related works

Market Share
ticket price average price of tickets sold by airline
frequency number of flights operated by airline
delay time average delay time of all flights operated by airline
delay ratio ratio of delayed flights to total number of flights by airline
cancel ratio ratio of canceled flights to total number of flights by airline

stop average number of stops of all flights by airline
safety number of casualties caused by past accidents of airline

craftsize average number of seats for a flight of airline
total seat total number of seats provided by airline during a quarter

Total Demand
avg. price average of all airlines’ ticket prices
population geometric mean of origin and destinations’ population

income geometric mean of origin and destinations’ income
CPI geometric mean of origin and destinations’ CPI

distance distance between origin and destination

4. ENSEMBLE PREDICTION MODEL
In this section, we design an ensemble-based predictor MAP-EF

that produces highly accurate route-specific predictions.

Overall architecture. Figure 2 shows the architecture of our en-
semble model which runs through 4 major steps.

Step 1 - Past Models with Regularization. In the first step, we use
the MAP-dataset, in conjunction with existing market share mod-
els (Market1 [16], Market2 [24], Market3 [26]) and demand models
(Demand1 [6], Demand2 [9], Demand3 [8]) in order to generate the
predictions made by models developed previously in the literature.
These predictions are used as additional features. In addition, we
augment past models with regularization [10].6 Because this step
5These predictions exceed that of related work, e.g., [26], which
predicted for 10 airlines with a 10 year history for 200 routes.
6In past works for market share prediction, the authors minimize
sum-squared-error (SSE), i.e. they try to find parameter values for
the math models that minimize ΣAi(mi − m̂i)

2 where mi (resp.
m̂i) is the true (resp. predicted) market share. In addition to this,
regularization minimizes

∑
Ai

(mi − m̂i)
2 + ||W ||, whereW is a

vector that consists of parameters ηk (or λk for demand prediction)



is straightforwardly built on top of past works, we do not go into it
in further detail.

Step 2 - Nash Equilibrium. Ticket pricing clearly influences both
market share and demand. At the same time, the competitive pric-
ing behavior among airlines would have further influence. Thus,
we include equilibrium pricing calculated based on past models as
an additional feature in MAP-EF. At the end of this step, each route
has one feature table for market share prediction and another for
demand prediction. Each table7 includes a set of features collected
from the MAP-dataset and from Steps 1 and 2.

Step 3 - Clustering of Similar Routes. We cluster all routes into
groups of similar routes with the features of the quarter we predict.
For each group of routes, we concatenate all the individual route
tables constructed in Step 2 for all routes in that group. The merged
tables are then used for training within MAP-EF. We describe this
step in further detail.

Step 4 - Iterative Gaussian Process Regression (GPR) and Random
Sample Consensus (RANSAC). At the end of Step 3, we have a
comprehensive MAP Feature Table. We use a combination of the
well-known methods of GPR [22] and RANSAC [15]. To make
market share/demand predictions for a routeR, this step trains only
on data about the group that contains route R, removes outliers
using RANSAC, and then uses GPR to make the final prediction.

Nash equilibrium price feature. In a competitive airline market,
the pricing behaviors of airlines are strategic. To capture the com-
petitive nature of the market, we include equilibrium price as an
additional feature8. The rationale behind this is that when an air-
line’s quoted price is higher/lower than its equilibrium price, the
customer might lose/gain utility, which has influence on the cus-
tomer’s choice and thus further affects an airline’s market share.
Therefore, we use the gap between equilibrium price and real price
as an additional feature. The utility (net income) N(Ai) of an air-
lineAi w.r.t. a specific route isN(Ai) = (pi−cpsgi ) ·d ·mi,where
pi is the ticket price and cpsgi is the passenger-related per ticket cost
obtained from the BTS dataset. d andmi are a route’s total demand
and airline Ai’s market share as described in Section 2. Recall that
Nash equilibrium is an equilibrium situation in a multi-player non-
cooperative game, where each player is assumed to know the equi-
librium strategies of the other players, and no player has anything
to gain by changing only its own strategy. Following this definition,
we formulate the computation of Nash equilibrium strategy of each
airline Ai ∈ A w.r.t. a given route:

max
pi

N(Ai), (3)

subject to pmini ≤ pi ≤ pmaxi , (4)
d ·mi ≤ Qi. (5)

Eq.(4) specifies the feasible section of price, and Eq.(5) indicates
that the total number of passengers cannot exceed its capacity Qi.

and ||W || is the norm of W . ||W || can be defined using either the
L1 or L2 norm. Thus, we have three options: SSE, SSE+L1 regu-
larization, and SSE+L2 regularization. In order to decide the best
model among these, we use grid search and cross-validation. For
cross-validation, we predict a quarter of the training data after train-
ing with the remaining quarters regardless of temporal sequence,
which creates n-fold cross validation, where n is the number of
quarters in the training data.
7Please refer to the Appendix [1] for detailed examples of the
merged table.
8Note that when computing the equilibrium price, the market share
and total demand is the math formula obtained in Step 1, and the
competition is only within a route.

Algorithm 1: ITER

1 Randomly assign values to pt−1 within [pmini , pmaxi ]
2 repeat
3 for Ai ∈ A do
4 counter ← 0
5 pi,t ← Solution of Eqs.(3)-(5)
6 if |pi,t − pi,t−1| ≤ ε then counter + +

7 pt−1 ← pt
8 until counter = n
9 return pt

To compute equilibrium price on a route, we propose ITER (Iter-
ative meThod for nash EquilibRium computation) in Algorithm 1,
where pt−1 and pt denote the optimal price vectors of two subse-
quent “virtual” periods. The algorithm starts with an initialization
of pt−1 within [pmini , pmaxi ], where pmini and pmaxi are the min-
imum and maximum possible prices quoted by airline Ai. After
this, iteration proceeds. In each repeat loop (Lines 2-9), the algo-
rithm updates optimal prices of all the airlines. Within each repeat
loop, there is a for loop (Lines 3-7). In the for loop, each airline al-
ternately updates its optimal price pi,t based on the previous price
vector p−i,t−1 of the other airlines in the last virtual period. It it-
erates until for each airline Ai ∈ A, the price is not updating in
two subsequent virtual periods (i.e., the difference between the two
prices is no larger than a small threshold |pi,t−pi,t−1| ≤ ε), which
means a Nash equilibrium is obtained.

THEOREM 4.1. If ITER returns a solution, then that solution is
the Nash equilibrium price.

Proof sketch. In each repeat loop, ITER finds the best response of
all players (airlines) given the strategies of the last virtual period.
When the best response strategies of all players in the current virtu-
al period are equal to the best response strategies of the last virtual
period, a Nash equilibrium is found according to the definition of
Nash equilibrium.

Clustering similar routes. Some routes are more similar than oth-
ers, e.g., LAX-JFK may show more similar market attributes to
SFO-JFK than LAX-SFO because the first two are long-haul routes
from west to east and the last one is a short-haul local route, and
estimating market share/demand would probably benefit from ex-
amining all of similar routes. In order to cluster routes, we use all
features gathered in the MAP-dataset, Steps 1 and 2. As we do not
know the “ground truth” definition of whether a cluster is correct
or not, we evaluate cluster quality via silhouette score9 [23]. The
silhouette score tends to keep increasing (with some glitches) as
the number of clusters increases. The elbow method [25] choos-
es the optimal number of clusters when silhouette scores stabilize.
We tested several clustering methods including K-Means++[7] and
connectivity-based and density-based clustering algorithms such
as DBSCAN [14]. Of these, we achieved the best result with K-
Means++.
RANSAC/GPR regression. Training with similar routes does not
always contribute positively to predictive accuracy. In several cas-
9The silhouette score is to calculate the consistency of clusters. As
more similar routes are contained by a cluster, its silhouette score is
higher. If G is a set of clusters, dis is some distance (dissimilarity)
measure, and e is some data item, the silhouette score SS(e) =

b(e)−a(e)
max{a(e),b(e)} where a(e) is the average distance between e and
the data items of the cluster it belongs to, and b(e) is the minimum
average distance between e and the data items of clusters it does
not belong to.
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es, it incurs additional error. We tested many linear regression al-
gorithms such as Ridge, Lasso, and Lars [10]. None of them could
produce stable performance across multiple routes. We then tested
a specially devised structure that consists of RANSAC and GPR.
RANSAC removes outliers from training data and GPR makes the
final prediction only with inliers. GPR is known to be robust be-
cause it is much less parametric than the others. Intuitively, GPR
says that if features of two airlines are similar, their market shares
should also be similar. It assumes that priors follow a Gaussian
distribution. After that, GPR also calculates posteriors using the
famous bayes rule, P(posterior) ∝ P(likelihood)P(prior) that
can be analytically calculated using a covariance matrix fitted to
the training data. To predict, GPR, using the learned covariance
matrix, calculates similarities between a test case and all training
cases, and makes a prediction. The entire process can be described
by a very complicated linear algebra form. RANSAC Regression
is known to be robust w.r.t. noise. In the first step, RANSAC per-
forms regression with a small random subset of training data. In
the second step, all training data that does not fit the model con-
structed during the first step is classified as outliers and others as
inliers. These two processes are iterated over time to refine the set
of inliers called the consensus set. Thus, MAP-EF uses RANSAC
with GPR as a base estimator. We show prediction results of other
regression techniques in the Appendix [1].
Time Overheads. In comparison with past models, MAP-EF should
spend additional time for clustering and more advanced regression
methods, which takes cubic time of training data size.

5. AIRLINE PROFIT MAXIMIZATION VI-
A FREQUENCY ALLOCATION

In this section, we suggest how to maximize an airline’s profit by
optimally allocating quarterly frequencies to routes.

DEFINITION 5.1 (FREQUENCY STRATEGY). A frequency s-
trategy of an airlineA for a given setR = {R1, . . . , Rn} of routes
is a vector 〈fi〉 of non-negative integers.

Intuitively, the i’th element fi of the frequency strategy denotes the
number of times the airline should fly route Ri in a quarter. For a
given airline A, a set R = {R1, . . . , Rn}, per flight cost Ci for
each route Ri, and total operation budget b, the profit maximiza-
tion problem finds the frequency allocation 〈fi〉 of A assuming its
competitors’ behaviors are fixed. We also conduct experiments to
test the robustness of this approach when competitors change their
strategies simultaneously.

DEFINITION 5.2. The Frequency-based Profit Maximization
Problem can be encoded as the optimization problem:

max
〈fi〉

∑
Ri∈R

Ni(fi) (6)

subject to 0 ≤ fi ≤ fmaxi , fi ∈ N, ∀Ri ∈ R (7)∑
Ri∈R

Cifi ≤ b. (8)

Ni(fi) is the profit of route Ri given frequency fi, which is ticket
revenue ri(fi) minus total operation cost Cifi and can be calcu-
lated by the market share and total demand predicted by MAP-EF.
The ticket revenue is defined as price per ticket multiplied by air-
line A’s total passenger demand on route Ri.

∑
Ri∈RNi(fi) is

the sum of profits for all routes. Because routes (such as the SFO-
LAX and JFK-LAX routes shown in Figure 1) can differ dramati-
cally in profitability, and as these numbers are basically estimated

by our market share and demand prediction algorithms, it follows
that the individual terms Ni(fi) in our objective function can vary
dramatically in form from one route to another. This is what makes
using a single form of objective function difficult. Constraint (7)
specifies the bound of frequency for each route as fmaxi and that
the frequencies are non-negative integers. The frequency bound
fmaxi = min(b b

Ci
c, fBTS), where fBTS is the maximum fre-

quency discovered in the BTS dataset, so that we prevent fi from
exceeding the feasible frequency bound. Constraint (8) indicates
the budget constraint. As discussed in Section 2, this optimiza-
tion problem belongs to the hardest class of KPs and RAPs, mainly
due to two reasons: i) the solution space is exponentially large as
Πif

max
i , and ii) the objective function is neither convex nor con-

cave (thus not linear).
Before presenting the complexity analysis and the algorithms to

solve MAP, we introduce two important assumptions. First, we as-
sume that varying the frequency of a route does not affect other
routes’ total demand and market share — Independence of Routes.
This assumption is valid for most cases where the passenger’s trav-
eling pattern on one route is independent of the other routes. Sec-
ond, we assume revenue (resp. cost) is a monotonically increasing
non-linear (resp. linear) function of frequency — Monotonicity of
Revenue and Cost. As shown in Figure 1, this assumption is intu-
itive. Increasing frequency leads to larger market share (thus higher
revenue) and higher operation cost. Therefore, the monotonicity of
revenue and cost does not imply the monotonicity of profit. This
prevents us from applying many well-developed algorithms for KPs
and RAPs. We show the computational hardness of the MAP prob-
lem with the following theorem.

THEOREM 5.3. The decision version of MAP (D-MAP) which
answers the question “Is there a frequency strategy whose profit ex-
ceeds a threshold P without violating budget b?” is NP-complete.

Proof sketch. We first show that there is a polynomial reduction
from the Knapsack problem to D-MAP. In the Knapsack problem,
there are n items (each has pi profit andwi cost), budget limitW , a
threshold V , and the objective is to find a set of items whose profit
is no smaller than V without violating budget W . This a special
instance of D-MAP where b = W , P = V ,Ci = wi and the profit-
frequency function of route Ri is linear with the slope of pi; and
the reduction from the Knapsack problem to profit maximization
can be done in polynomial time.

Next, we show its correctness, i.e., Y is a yes instance of the
Knapsack problem ⇐⇒ X reduced from Y is a yes instance for
D-MAP.

“if” direction. Assume that there exists a solution s for a Knapsack
problem instance. We can create a frequency strategy 〈fi〉, where
fi is the number of ith item in the solution s. s can achieve a profit
of at least V without violating budget W , and so is 〈fi〉 because
b = W , P = V , Ci = wi and the same linear profit function.

“only if” direction. Assume that a frequency strategy 〈fi〉 can
achieve a profit of at least P without violating budget b. We can
create a Knapsack solution s to select fi items for ith item. s is a
valid solution of the Knapsack problem because b = W , P = V ,
Ci = wi and the same linear profit function.

Finally, D-MAP is in NP because the verification process to
check whether a frequency strategy’s profit exceeds a threshold re-
quires |R| oracle queries. Note that each oracle query takes a con-
stant time for a given route and airline. Thus, the verification pro-
cess takes polynomial time.
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Due to the computational complexity, it is intractable to find an
optimal solution of the MAP problem by performing brute-force
search. As a result, we propose two new approaches: i) MAP-BBB
is a bi-level branch and bound method, and ii) MAP-G is a greedy
algorithm operating over groups of routes. Section 6 shows that
these two algorithms have complementary performance in terms of
runtime (scalability) and optimality.

5.1 Bilevel Branch and Bound (MAP-BBB)
Branch and bound (BB) is a popular search algorithm for com-

binatorial optimization to efficiently enumerate the entire solution
space and find the optimal solution. The solution space of BB can
be represented by a rooted tree and each child of a parent node
considers a subset of solution space of its parent node. BB con-
sists of a series of repeated branching and bounding processes. In
the branching process, the feasible solution space is divided into a
number of smaller subsets, while in the bounding process, an upper
and a lower bound of the objective (airline profit in this problem) is
derived for each subset of solution space. The largest lower bound
is updated and, when the upper bound of a certain subset is smaller
than the current largest lower bound, that subset is pruned since it
does not contain the optimal solution. As we can see, the key of
BB lies in finding a tight upper and lower bound for the bound-
ing process, especially for upper bound. While most of the BB
algorithms for Knapsack problems find upper bounds through lin-
ear relaxation [19], the complicated form of our prediction model
prevents us from implementing such upper bounds. As a result, we
propose a novel Bilevel branch and bound (MAP-BBB) algorithm,
which uses another sub-BB search to find an upper bound for the
main BB process.

Algorithm 2 shows the MAP-BBB algorithm that builds on clas-
sical branch and bound methods. The search for an optimal solu-
tion explores a tree whose nodes are labeled with n intervals, one
for each of the routes R1, . . . , Rn under consideration. Intuitive-
ly, if a node is labeled with the interval [`, u] for a particular route
Ri, it means that we are currently restricting the frequency in the
interval [`, u] for that route. MAP-BBB also maintains a priori-
ty queue Q of all the nodes where the head has the largest upper
bound profit. The root node has the full range of [0, fmaxi ] for each
route Ri ∈ R. As we descend the tree, these intervals get small-
er. In Figure 3, for example, the parent node np is divided into
two children nodes cl and cr , where the frequency range of the last
route of np is divided into two halves.

For the bounding process of child node c ∈ {cl, cr}, upper and
lower bound profits of the optimal strategy that can be defined with
the frequency range of c are calculated (to be further described be-
low). If its lower bound LBc is larger than the temporary maxi-
mum lower bound, denoted as MaxLB in Algorithm 2, and its low-
er bound costCc of the optimal strategy does not violate the budget
b, then we update MaxLB (line 11). If its upper bound UBc is no
larger than MaxLB or its lower bound cost Cc violates budget b,
we prune this node (line 11). Once we find a node that consists of
only non-divisible ranges, i.e., min and max of ranges are all the
same, and its cost is within budget b, it is a candidate of the optimal
frequency strategy. The optimal strategy is selected among them
(line 12). N∗ and 〈f∗i 〉 stand for the obtained optimal profit and
optimal frequency strategy, respectively.

Lower bound profit and lower bound cost. Calculating a low-
er bound of profit LBc and cost Cc of node c is a key to the
MAP-BBB algorithm. We choose the min frequency value for
each route’s range and calculate its lower bound profit and cost with
MAP-EF. This is valid because the optimal profit and the associated
cost of node c are always no smaller than that.

…
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Figure 3: An example branch and bound process for MAP-BBB
with three routes. Each blue bar of node represents a frequency
range. Lower BB is used to calculate an upper bound profit of a
node. cl and cr are two children of the parent node np.

Algorithm 2: MAP-Bilevel Branch and Bound (MAP-BBB)

1 N∗ ← 0, 〈f∗i 〉 ← 0
2 Create root
3 MaxLB ← LBroot
4 PriorityQueue Q← ∅
5 Q.enque(root)
6 while |Q| > 0 do
7 np ← Q.poll()
8 if np is divisible then
9 Create cl, cr

10 for c ∈ {cl, cr} do
11 if LBc > MaxLB and Cc ≤ b then MaxLB ← LBc

if UBc ≥MaxLB and Cc ≤ b then Q.enque(c)
12 else if N∗ < N(np) and Cnp ≤ b then
13 N∗ ← N(np)
14 〈f∗i 〉 ← frequency strategy of np
15 return 〈f∗i 〉, N∗

Upper bound. As we cannot employ linear relaxation, upper bound
calculation is more challenging. For this, we use another branch
and bound process, which is why the proposed algorithm is called
a bilevel branch and bound. For each range ofRi in node c, we per-
form the following sub branch and bound process to find its optimal
frequency within the range without a budget constraint. This is
good because the optimal profit without budget limit is definitely
no smaller than the optimal profit with budget constraint and it is
much faster than the upper bound with budget check across multi-
ple routes. We omit its pseudo code because it is more or less the
same as Algorithm 2 except that the sub branch and bound does
not check budget violation. In order to distinguish two branch and
bounds, we use different terms sub and main. The sub root node is
initialized with the specified range ofRi. During the sub branching
process, we equally divide a sub node interval into two halves and
create two sub children nodes. In the sub bounding process of a sub
node, the heuristic for computing a lower bound of the sub branch
and bound is defined as ri(frandom)−Cifrandom, where frandom
is a random frequency in the frequency range. This holds since any
feasible frequency generates a lower bound of the optimal profit.
The heuristic for computing an upper bound of the sub branch and
bound is ri(fmax)− Cifmin, where fmax and fmin are the max-
imum and minimum frequency of the sub node, which utilizes the



monotonicity of revenue and cost. The sum of maximum profits
calculated for each route with the sub branch-and-bound without
budget constraint is always no smaller than that with a budget, thus
sub branch-and-bound provides an upper bound profit of the main
node. With the lower and upper bounds derived above, MAP-BBB
eliminates only non-optimal frequency strategies of routes, which
proves correctness and optimality of MAP-BBB. We show the best-
case complexity analysis of MAP-BBB:

THEOREM 5.4. The best-case runtime complexity of MAP-BBB
is O((log(max{fmaxi }))2 × n), where n is the number of routes.

Proof sketch. The best-case complexity of the bi-level branch and
bound algorithm happens when in each branch and bound process,
one of the children nodes is pruned. For each route Ri, its max-
imum frequency is fmaxi and it takes log(fmaxi ) branches until
the frequency in this route is nondivisible; for all routes, it takes
max{fmaxi } × n time. While for each branch it needs at least
O(log(max{fmaxi })) time to solve one sub branch and bound.
Thus, the total complexity is O((log(max{fmaxi }))2 × n).

The worst-case complexity happens when there is no pruning in
each branch and bound process. however, the experimental results
in Section 6 show that this never happens and the average runtime
of MAP-BBB is promising.

5.2 Greedy Algorithm (MAP-G)
As MAP is NP-hard, it is clear that the exact algorithm MAP-

BBB may not be scalable. In this section, we propose a greedy al-
gorithm to solve MAP more efficiently while sacrificing optimality.
A naive greedy algorithm is to increase the frequency of the route
with the largest marginal profit/cost ratio (PCR) which is known
to work very well for conventional knapsack problems. However,
unlike conventional knapsack problems where PCR is fixed (i.e.,
linear objective function), the PCR in our problem fluctuates as can
be seen from the example in Figure 4. According to our experi-
ments, this naive greedy approach on average achieves only 0.66 of
the optimal profit.

To address the fluctuating PCRs, we suggest an improved “Group-
Greedy” algorithm (MAP-G). The basic idea of MAP-G is that,
instead of greedily raising the frequency of a single route with the
largest PCR, MAP-G first divides routes into groups, and then com-
pares the PCRs of different groups and raises frequencies of the
group of routes with the largest PCR. As shown in Algorithm 3, it
randomly divides n routes into bn

q
c groups (line 2), each consist-

ing of q routes10. Initially, each group is assigned small budget δ
(line 3) and we independently solve MAP within each group, using
exact algorithms such as MAP-BBB as a sub-routine (line 6). We
merge all groups’ most recent frequency strategy to create a com-
plete frequency strategy of all routes (line 8), and its profit is com-
pared with the temporary maximum profit (line 10). The budget
of the group that creates the largest marginal profit density is in-
creased by δ (line 9). This process iterates until the sum of groups’
budgets equals to the total budget b. This method is robust w.r.t.
the fluctuating PCR because we calculate the optimal strategy for
each group in each iteration. On the other hand, calculating op-
timal frequency strategy for a group of routes is much faster than
that of all routes because the solution space is much smaller. We set
δ = b × 1

h
, where h > 1 is an integer. The quality of the solution

increases as q increases — if q = n and h = 1, it finds the optimal

10The actual number of routes in a group may slightly vary due to
the floor operation.

Algorithm 3: MAP-G

1 N∗ ← 0, 〈f∗i 〉 ← 0
2 G ← divideR into bn

k
c groups

3 bg ← δ, ∀g ∈ G;
4 while

∑
g∈G bg ≤ b do

5 for g ∈ G do
6 〈f∗g 〉 ← solve MAP of g with budget bg
7 g∗ ← the best PCR group
8 〈fi〉 ← merge({〈f∗g 〉|g ∈ G})
9 bg∗ ← bg∗ + δ;

10 if N∗ < N(〈fi〉) then 〈f∗i 〉 ← 〈fi〉
11 return 〈f∗i 〉, N∗

Figure 4: Best Profit-Cost Ratio among all routes in each iteration
of the naive greedy Knapsack algorithm.

solution. The benefit of a small q is the short runtime, while sac-
rificing optimality. By adjusting q, MAP-G can trade-off between
runtime and optimality.

6. EXPERIMENTAL RESULTS
In this section, we first compare MAP-EF with several bench-

mark methods for both route demand and airline market share pre-
diction. We then show the improvement of the optimal profit ob-
tained based on MAP-EF prediction compared with that based on
traditional methods. Last, we compare both scalability and opti-
mality of our proposed algorithms with several benchmarks.

6.1 Market Share & Total Demand Prediction

6.1.1 Experimental Environment
For route-specific predictions, we selected the 700 largest routes

in terms of the number of passengers. We predicted market share
and total demand for the first quarter of 2015, the most recent pe-
riod for which all data are available, after training with 10 years
data. We tested 3 pre-existing prediction models for both market
share and total demand as described in Section 2, and our proposed
method MAP-EF.

For each route, we evaluated with the following three criteria: i)
Correlation Coefficient (CC), ii) R2, and iii) Mean Absolute Error
(MAE) divided by the maximum market share value of a route or
divided by true total demand value. These two metrics are much
stricter than pure MAE values. A good predictor will perform well
under all three metrics.

6.1.2 Experiment Results
Market Share. Table 3 (resp. Table 4) summarizes mean values
(resp. variances) of the three metrics for all routes (All) and for



routes with 4 or more operating airlines (|A| ≥ 4) — as the num-
ber of airlines increases, predictions become more challenging. A-
mong existing models, Market1 shows the best performance. Its
CC of 0.82 is quite reasonable with low variance around 0.18, but
its poor R2 of −0.84 indicates some issues. Two metrics revealing
contradictory results indicates that the rise/decline of the predicted
values may have high error. Thus, Market1 can tell us which airline
has larger market share than another, but its absolute market share
value is not reliable. Profit optimization based on the best com-
petitor, Market1, does not make sense because even a small error in
predicting market share may lead to a high loss in profit. As shown
in Table 3, MAP-EF shows very stable performance in terms of both
mean and variance for all metrics, especially when |A| ≥ 4.

Table 3: Mean values of CC, R2 and MAE/Max for market share
predictions. ↑ indicates that larger values are preferred and vice
versa. The best method is highlighted in yellow.

All |A| ≥ 4

CC(↑) R2(↑) MAE CC(↑) R2(↑) MAE
/Max(↓) /Max(↓)

Market1 0.82 -0.84 0.133 0.82 0.18 0.157
Market2 0.48 -3.51 0.188 0.62 -1.92 0.212
Market3 0.34 -6.96 0.27 0.44 -3.99 0.32
MAP-EF 0.96 0.88 0.052 0.95 0.89 0.046

Table 4: Variance of CC, R2 and MAE/Max of Market Share Pre-
dictions.

All |A| ≥ 4

CC(↓) R2(↓) MAE CC(↓) R2(↓) MAE
/Max(↓) /Max(↓)

Market1 0.18 132.2 0.06 0.09 4.29 0.08
Market2 0.54 109.7 0.08 0.31 26.77 0.09
Market3 0.55 964.9 0.10 0.35 38.66 0.10
MAP-EF 0.03 0.12 0.01 0.01 0.05 0.01

Total Demand. Whereas route-specific market share prediction is
a list (one value for each airline), total demand prediction of a route
is a scalar value. Thus, we create two lists, one of true demand and
one of predicted demand, and perform CC and R2 analysis. MAE
divided by true demand can be measured for each route and its
mean and variance are also summarized in Table 5. Again, MAP-
EF shows better performance than all other methods.

All these results indicate that profit maximization should be based
on the prediction results of MAP-EF, while “optimal” strategies ob-
tained with other models are more likely to be far from real optimal
strategies. Nevertheless, we note that MAP-EF builds upon other
pre-existing prediction models’ findings and hence we build on top
of these prior scientists’ work.

6.2 Profit Maximization

6.2.1 Experimental Environment
We performed experiments on a cluster of 64 machines running

Linux with 2.4GHz Xeon CPU and 24GB RAMs. We selected six
major airlines and calculated the optimal frequency allocation s-
trategy for their top K biggest markets (a market means an origin-
destination pair, i.e., a route). We retrieved real budget information
of routes from the BTS dataset such that budget for a set of routes
is the sum of their real budgets. For the scalability test, we chose

Table 5: CC, R2 and MAE divided by true demand of Total De-
mand Predictions. Note that the variance of CC and R2 cannot be
defined because it predicts a scalar value for each route.

CC(↑) R2(↑) MAE/True MAE/True
(Mean,↓) (Variance,↓)

Demand1 0.77 0.31 0.29 0.06
Demand2 0.49 -1.4 0.57 0.1
Demand3 0.56 -0.8 0.49 0.08
MAP-EF 0.98 0.96 0.07 0.004

Figure 5: Profit maximization with different prediction methods
(relative to MAP-EF) and 90% confidence interval is shown.

the number of markets K = {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}. We
compare the proposed MAP-BBB and MAP-G with two bench-
mark algorithms, namely N-Greedy (naive greedy algorithm) and
DP (dynamic programming). DP is a well-known approach for KPs
and RAPS and we refer to Appendix [1] for a detailed description
of DP. MAP-BBB is the proposed bilevel branch-and-bound algo-
rithm. We used MAP-BBB as subroutine for MAP-G to solve the
profit maximization subproblem in each group.

6.2.2 Maximum Profit of Different Predictors
Ground truth is not available for the true maximal profit an airline

could possibly make as their actual quarterly profit may not reflect
the total profit that they could have maade. In theory, MAP-BBB
is guaranteed to produce the maximal profit under the assumptions
made in our model. As we see below, MAP-BBB works when the
number of markets is relatively small. In order to explore the prof-
its obtained using predictions made by pre-existing market share
predictors [16, 24, 26], we compare them with the profits obtained
using the MAP-EF predictor. We also obtain the optimal frequency
allocation strategies using MAP-BBB for K ≤ 6 based on differ-
ent prediction methods, and then calculate the corresponding profit
of these strategies using MAP-EF (for larger K, MAP-BBB, as an
exact algorithm, takes an inordinate amount of time). As shown in
Figure 5, the optimal profit obtained by all existing methods has
a gap of around 30% compared with MAP-EF, which is a huge
amount considering the scale of profit (typically on the order of
millions of dollars per route per quarter).

6.2.3 Comparing Different Optimization Algorithms
In this subsection, we first compare several algorithms which are

targeted at small K (number of markets) values, such as DP, MAP-
BBB, and N-Greedy. Using these algorithms as subroutines, we
then tested the performance of MAP-G with large K values. Av-
erage optimized profits of airlines and runtime are summarized in
Figures 6 and 7. “Real” stands for the average profit of airlines cal-
culated with real frequency strategies in the BTS dataset. Interest-
ingly, “Real" shows worse results than even the simple N-Greedy.
We see that past market share models can only capture about 75%
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Figure 6: (a) Optimized profits and (b) Runtime for K ≤ 6.
K is the number of routes.

(a) (b)

Figure 7: (a) Optimized profits and (b) Runtime for K ≥ 5,
with the number of routes in a group as h = 100.

of the profit generated by MAP-EF. This is a substantial loss in ab-
solute dollars.

Profit and Runtime Analysis for K ≤ 6. As we can see from
Figure 6 (a), since both DP and MAP-BBB are exact algorithm-
s, their maximum profit values are the same and are the largest.
However, DP’s runtime, shown in Figure 6 (b), grows exponential-
ly and we could not finish it on time for K ≥ 4. N-Greedy cannot
achieve a reasonable profit. When K = 2, it has around 70% of
the optimal profit calculated with exact algorithms; as K increas-
es, however, it decreases to only 60%. Before K = 5, MAP-BBB
can find the optimal profit in a few seconds while DP takes around
10,000 seconds in average. This is due to its pseudo polynomial
runtime, which behaves more like exponential runtime than poly-
nomial time. This indicates that MAP-BBB scales really well. The
MAP-BBB is more suitable as the subsolver of MAP-G.

Profit and Runtime Analysis for K ≥ 5. Table 6 shows the opti-
mality of MAP-G when K = 4, 5 or 6. The exact maximum profit
when K ≥ 7 cannot be computed as the exact algorithms either
run out of memory or take inordinately long. But in cases when
K ≤ 6, MAP-G achieves 99% of the maximum profit suggesting
that it does very well. As expected, MAP-G is robust w.r.t. the
problem of fluctuating profit and independent processing of each
route from which N-Greedy suffers. Figure 7 (a) shows that MAP-
G is consistently better than N-Greedy and N-Greedy obtains only
about 70% of MAP-G’s profit, suggesting that MAP-G is far supe-
rior. We confirm that q = 3 (i.e. groups of similar routes are limited
to have 3 routes in them) leads to an increase in profit than when
q = 2 for MAP-G — in Figure 7 (a), MAP-G with q = 3 is con-
sistently better than q = 2 — which corresponds to our conjecture
that optimality will be improved as the size of groups increases.

The profit increase from “Real” to the optimized one is quite
impressive. Airlines can increase their profits by at least 55% by

Table 6: Profit maximization of MAP-G(BBB) with q = 3 (relative
to the optimal profit) when K = 4, 5 or 6. K is the total number
of routes, q is the number of routes allowed in a group.

K = 4 K = 5 K = 6
Profit 0.99 0.97 0.99

adopting MAP based on our model with available data. But please
note that we assume the behaviors of other airlines are fixed, which
is not the case in reality. In the following, we will test the robust-
ness of MAP, i.e., when the frequency and pricing strategies of oth-
er airlines also vary (and not known in advance), how much profit
can be achieved by the airline to be optimized.

Robustness Analysis. In the above experiments, we assume that
the frequency allocation and pricing strategies of all other airlines
are fixed and known in advance. We now test the robustness of
our approach, i.e., we test the airline profits obtained by our ap-
proach when the frequency and pricing strategies of other airlines
vary. To do this, we randomly varied price (resp. frequency) by
a rate in {[−20%,−10%), [−10%, 0), 0, [0, 10%), [10%, 20%]}.
We first compute the optimal strategy by assuming that the other
airlines’ behaviors are fixed (because they are unknown). We then
evaluate this obtained optimal strategy with the prediction model
of the changed price and frequency strategies of other airlines. We
computed the ratio of the sub-optimal profit (not knowing other air-
lines’ price/frequency changes) to the optimal profit (knowing the
changed price/frequency strategies of other airlines) — in order to
calculate the exact optimal profit on time we tested K up to 6. For
each frequency and price change rate combination, we generated
30 scenarios with all different random seeds and profits are aver-
aged on them. As is shown in Figure 8, this profit ratio is always
larger than 0.8, which indicates robustness of our MAP approach
even with a 40% fluctuation of both price and frequency. Moreover,
it is shown that for a fixed frequency change rate, the profit ratio is
almost the same for all price change rates, which means that fre-
quency change is more effective in airlines’ competition. Last, the
largest ratio happens in the case that competitors increase frequen-
cies, which means MAP is more effective at competitive markets.

Figure 8: Profits by varying price and frequency of other competi-
tors

7. CONCLUSION AND FUTURE WORK
In this paper, we propose the MAP framework for optimal fre-

quency allocation over multiple routes. We make three key con-
tributions. i) We design a novel ensemble predictor based on past
regression-based work, clustering techniques and game theoretic
analysis, which have never been utilized for this purpose; ii) based
on the prediction, we design several algorithms to solve the prof-
it maximization problem; iii) we conduct extensive experiments.
We show that the prediction performance of MAP-EF is much bet-
ter than past methods. We also compare runtime and optimality of
our proposed optimization algorithms with benchmarks. We also



show that MAP increases profitability per route by at least 55%.
Even if there are factors we did not consider on the basis of open
source data and these numbers are reduced substantially if private
airline data was to be used, the increased profitability would still be
substantial.

We consider two potential directions for future work. First, our
current optimization considers only frequency allocation. In the fu-
ture, we may also consider joint-optimization over frequency and
pricing. However, the monotonicity property of revenue and cost
is not guaranteed with ticket pricing11 and it is already one of the
hardest KPs and RAPs with only frequency being considered. Sec-
ond, this paper assumes the behaviors of all other competing air-
lines are fixed. When other airlines are also strategic, game theory
would be a natural methodology to solve the problem, where in-
stead of a single-airline-centric optimization, a Nash equilibrium
will be defined.
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