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Though there are numerous traditional models to predict market share and demand along airline routes, the prediction of
existing models is not precise enough and, to the best of our knowledge, there is no use of data-mining based forecasting
techniques to improve airline profitability. We propose the MAP (Maximizing Airline Profits) architecture designed to help
airlines and make two key contributions in airline market share and route demand prediction and prediction-based airline
profit optimization. Compared with past methods to forecast market share and demand along airline routes, we introduce a
novel Ensemble Forecasting (MAP-EF) approach considering two new classes of features: (i) features derived from clusters
of similar routes, and (ii) features based on equilibrium pricing. We show that MAP-EF achieves much better Pearson
Correlation Coefficients (over 0.95 vs. 0.82 for market share, 0.98 vs. 0.77 for demand) and R2-values compared with three
state-of-the-art works for forecasting market share and demand, while showing much lower variance. Using the results of
MAP-EF, we develop MAP-Bilevel Branch and Bound (MAP-BBB) and MAP-Greedy (MAP-G) algorithms to optimally
allocate flight frequencies over multiple routes, to maximize an airline’s profit. We also study two extensions of the profit
maximization problem considering frequency constraints and long term profits. Furthermore, we develop algorithms for
computing Nash equilibrium frequencies when there are multiple strategic airlines. Experimental results show that airlines
can increase profits by a significant margin. All experiments were conducted with data aggregated from four sources: US
Bureau of Transportation Statistics (BTS), US Bureau of Economic Analysis (BEA), the National Transportation Safety
Board (NTSB), and the US Census Bureau (CB).

CCS Concepts: rInformation systems→ Data mining; rComputing methodologies→ Ensemble methods; Optimiza-
tion algorithms; Search methodologies;

Additional Key Words and Phrases: Ensemble Prediction, Regression, Airline Demand and Market Share Prediction, Airline
Profit Maximization

1. INTRODUCTION
Since the deregulation of US airlines in 1978, there has been intense competition amongst airlines
for market share and, eventually, profitability. While there is considerable work on predicting market
share and demand along airline routes, the prediction of existing models is not precise enough and, to
the best of our knowledge, there is no use of data-mining based forecasting techniques to improve
airline profitability. In this paper, we formally define the MAP problem by allowing airlines to
decide the flight frequencies on their flying routes in order to maximize their profits, subject to cost
constraints. For instance, if there is a set R of routes in the world, and the airline can fly up to n
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routes where n ≤ |R|, then our MAP problem would capture both route selection (which routes to
fly) and frequency1.

The first key contribution of this paper is a precise route-specific prediction of both total de-
mand of an origin-destination market and an airline’s market share. Existing related works only use
simple regression methods and focus on a limited number of variables. Our studies of three ma-
jor route market share [Hansen 1990; Suzuki 2000; Wei and Hansen 2005] and demand prediction
[Alperovich and Machnes 1994; Bhadra and Kee 2008; Bhadra and Wells 2005] methods show that
the Pearson Correlation Coefficients between the predicted values and the actual values are a max
of 0.82 (for one market share method) and 0.77 (for one demand model). Other existing model-
s predict much lower numbers. Although one of these regression methods [Hansen 1990] outputs
satisfactory prediction results in our experiments, there is still a gap between the prediction and the
real value. The relatively “small” prediction gap can lead to a huge revenue loss if airlines make
decisions based on the prediction. Worse still, due to the inflexibility of existing models, the pre-
diction gap can be large for some routes. We propose a new ensemble-based prediction method for
forecasting total demand and market share, which uses an extensive number of features and several
state-of-the-art clustering and regression algorithms that have never been adopted for MAP. The
new ensemble method builds upon existing models, but also collects several new features, together
with novel clustering and game theoretic methods. We are the first to propose a prediction method,
for a broad set of routes (around 700 - past works stopped at 200), which considers the predictions
of both total demand (demand generation) of a route and market share (demand allocation) of each
airline operating in that route (13 airlines in total).

The second key contribution is two novel algorithms for solving MAP, which becomes computa-
tionally intractable with brute-force search when the number of routes is large. This is because: 1)
the solution space is exponential w.r.t. the number of routes, 2) the profit-frequency function, which
is generated by our proposed prediction method, is neither convex nor concave (and thus not lin-
ear). We show in Section 2 that MAP belongs to the hardest subclass of Knapsack Problems (KPs)
and Resource Allocation Problems (RAPs), and despite a vast amount of existing works [Bretthauer
and Shetty 2002; Caprara et al. 2000; Pferschy 1999; Pisinger 2000] for both KPs and RAPs, all
previous algorithms fail to solve it efficiently. Based on predictions made by MAP-EF, we come up
with two optimization algorithms to solve the raised profit maximization problem. We present an
exact algorithm to solve MAP based on a novel Bilevel-Branch and Bound approach (MAP-BBB)
that computes the true optimal solution, as well as a Greedy algorithm (MAP-G) that more quickly
computes suboptimal solutions.

Third, we study two practical extensions of the basic frequency-based airline profit maximization
problem and develop algorithms to compute Nash equilibrium strategies when there are multiple
strategic airlines. 1) Airlines are usually conservative about changing their flight frequencies. Fur-
thermore, they are concerned about the effect of the current frequency strategies on future “poten-
tial” profits. As a result, we introduce bounded frequencies and a future profit effect factor in the
basic profit maximization problem as two extensions of the basic problem and study their effects on
airlines’ profits. 2) We consider multiple strategic airlines. In the basic profit maximization problem,
we assume only one airline is strategic in deciding its frequencies. We release this assumption and
study Nash equilibrium frequency strategies with multiple strategic airlines, each of which is smart
enough to reason about the optimal behavior of the other airlines.

Last, we conduct extensive experimental evaluations to compare MAP’s prediction results with
those of past works. We show that past prediction models are significantly “beaten” by MAP, which
increases these predictive accuracies to over 0.95, while significantly reducing the variance in our
prediction error compared with past works. We also compare both the optimality and scalability
of our proposed profit maximization algorithms with several benchmarks. The result shows that our

1Because the airline industry is very complex, it is difficult to model all other sources of profit that might be available (e.g.,
in-flight sales, baggage fees, etc.) to the airline, especially as such data is not freely available.
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predictions are far superior to past efforts. Moreover, by using MAP, an airline can increase its profit
by at least 55% under mild conditions.2

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 dis-
cusses the data set used in our study. Section 4 shows our proposed prediction framework based on
our ensemble method. Section 5 presents our proposed algorithms for the basic profit maximiza-
tion problem. Section 6 introduces two practical extensions of the profit maximization problem.
Section 7 studies equilibrium frequency strategies with multiple strategic airlines. Section 8 con-
ducts extensive experimental evaluations. For notational convenience, Table I summarizes all the
notations used in this paper.

Table I: Summary of Notations

A a set of airlines Ni(fi) profit whenA operates fi flights on routeRi

Ai ith airline ofA 〈fi〉 frequency strategy for all routes inR of airlineA
R a set of routes 〈f∗

i 〉 optimal frequency strategy of airlineA
Ri ith route ofR N(〈fi〉) profit of frequency strategy 〈fi〉

Symbols related to predict market share of routeR b budget limit of the Profit Maximization problem
Xik the value of the kth variable, e.g., price, of airlineAi K the number of routes to optimize profit of airline
ηk the weight ofXik Symbols related to MAP-BBB in Algorithm 2
Vi airlineAi’s customer utility inR np parent node
mi market share of airlineAi inR c child node

Symbols related to predict demand of routeR cl, cr left and right children of a parent node
Yk the value of the kth variable, e.g., population N∗ optimal profit sought by the algorithm
λk the exponent of Yk MaxLB bounding threshold
d total demand (the number of passengers) of routeR UBc, LBc lower bound and upper bound profit of node c
Symbols related to calculate Nash Equilibrium of routeR Cc lower bound cost of node c
pi average ticket price ofAi for routeR Symbols related to MAP-G in Algorithm 3
cpsgi unit passenger related cost ofAi in routeR g a group of route
N(Ai) utility (profit) ofAi in routeR q the number of routes in a group g

Symbols related to Profit Maximization of airlineA G a set of route groups,R is divided into |G| groups
Ci per flight cost of routeRi for a given airlineA δ budget allocation unit
fi flight frequency of routeRi for a given airlineA 〈f∗

g 〉 optimal frequency strategy of group g
ri(fi) revenue whenA operates fi flights on routeRi

2. RELATED WORK
Existing airline market share and demand prediction models try to write down math formulas for
market share/demand and then use regression to find values of the parameters in these formulas
that minimize the sum of the squared errors between the predicted values and the true values. We
therefore call these math models to indicate that the structural form of these models is written down
a priori without reference to any data and that the parameter values that minimize error are then
computed using available data.
Airline market share prediction. Most works on airline market share prediction use a multinomial
logit (MNL) regression model [Hansen 1990; Suzuki 2000; Wei and Hansen 2005]. For a set A of
airlines in a given route, an airline Ai’s market share mi is modeled as:

mi =
eVi∑

Aj∈A e
Vj
. (1)

Here Vi =
∑
k ηkXik is the customer’s utility for choosing airline Ai’s service, Xik is the value of

the kth variable for airlineAi and ηk is its corresponding weight to be learnt from data. Various vari-
ables have been studied. In Market1 [Hansen 1990], the authors consider a route’s price, frequency,

2Like all past models, our analysis of airline profits is only based on publicly available data, so the true number might be
smaller. Nevertheless, even a 10% improvement in the real-world would be substantial.
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Fig. 1: Quarterly revenue (dashed lines) and profit (solid lines) in 10 million dollars generated by
MAP-EF. Revenue is defined as average ticket price multiplied by the number of passengers. Cost
is per flight cost multiplied by frequency. Note that the profit-frequency curve (revenue minus cost)
is very irregular even though the revenue-frequency curve is monotonically increasing. The shapes
of the curves are quite different.

and the number of stops. Based on the prediction, they analyze competition among airlines. Market2
[Suzuki 2000] considers an airline’s frequency, delay, and safety. Market3 [Wei and Hansen 2005]
studies the effect of aircraft size and seat availability on market share and considers other variables
such as price and frequency.

Total demand prediction. For total demand of a route, a multiplicative [Alperovich and Machnes
1994; Bhadra and Kee 2008; Bhadra and Wells 2005] regression model is the most frequently adopt-
ed. Formally, a route’s total demand is represented as:

d =
∏
k

Y λk

k , (2)

where Yk is a value of the kth variable and λk is a parameter to be learnt from data which measures
the importance of Yk. Demand1 [Alperovich and Machnes 1994] considers wealth related variables
such as price, income and CPI (consumer price index). Demand2 [Bhadra and Wells 2005] studies
the influence of demographic variables such as price, income and population, as well as hub status
(i.e., large, medium, small or non-hub) on passenger demand. Demand3 [Bhadra and Kee 2008]
focuses on variables such as price, income, population and origin-destination distance.

In this paper, our prediction models build on all of these methods, but use an ensemble approach
to achieve not only much higher predictive accuracy, but also much greater robustness.
KPs and RAPs. Airline profit maximization through optimal frequency allocation over multiple
routes, given a certain budget constraint, belongs to the family of KPs and RAPs, which have been
extensively studied ever since the work of Dantzig [Dantzig 1957] in 1957. While all variants of KPs
are known to be NP-hard, MAP, which has bounded integer variables, and a non-concave (arbitrary)
objective function, is notoriously hard [Bretthauer and Shetty 2002].

There are some Polynomial Time Approximate Schemes (PTAS) and even Fully-PTAS to solve
bounded knapsack problems (BKPs), using greedy algorithms [Keller et al. 2004], dynamic pro-
gramming [Pisinger 2000] and branch and bound [Martello and Toth 1977]. The first two methods
assume linear objective functions, while the last approach uses linear relaxation. Several algorithms
have been proposed to solve KPs/RAPs with non-linear objective functions, especially for a con-
cave and non-decreasing objective function [Bretthauer and Shetty 2002]. The common idea is to
decompose the original objective function into a set of approximated piecewise linear functions.
Unfortunately, none of these works for our problem. This is because the profit-frequency function
in our problem is neither concave nor convex (thus not linear), varies from one route to another,
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and cannot be described by a simple math formula but by a series of clustering, regression, and
other types of functions3. As shown in Figure 1 where the x-axis is the frequency and the y-axis
is the profit (or revenue), the two graphs are for two routes (SFO-LAX route on the left and JFK-
LAX route on the right) and 4 major US airlines. We see that the shapes of the curve on the left
(SFO-LAX) is quite different from another on the right (JFK-LAX). In fact, across the 700 routes
we studied, there was huge variation in the actual profit/revenue curves. Thus, any method specially
devised for a certain form of objective functions (e.g., linear, concave or convex) cannot be applied.
Optimal decision making based on data-mining. Data-mining based optimization has been im-
plemented by many existing KDD papers, including optimal bidding [Zhang et al. 2014; Zhu et al.
2015], smart pacing [Xu et al. 2015] and optimal recommendation systems [Lu et al. 2014]. In the
first step of these works, a predicted objective function is learned using regression analysis tech-
niques. Based on the prediction results, an optimization problem is solved, either analytically [Lu
et al. 2014; Zhang et al. 2014] or via optimization algorithms [Xu et al. 2015; Zhu et al. 2015].
While our MAP framework follows this general scheme, it differs in many ways, including the fact
that the predicted objective function is in a very complicated linear algebra form.

3. THE MAP DATASET
We have created an integrated “MAP” data set by aggregating information from 4 publicly avail-
able data sources, viz. the Bureau of Transportation Statistics (BTS) [BTS 2016], the Bureau of
Economic Analysis (BEA) [BEA 2016], the National Transportation Safety Board (NTSB) [NTS-
B 2016], and the U.S. Census Bureau (Census) [Census 2016]. The entire dataset amounts to 539
million rows, 80% of which are from the BTS dataset. BTS provides almost all aspects of airline
market information such as ticket price4, frequency, number of stops, delay records, aircraft size and
available seats. The BEA and the Census release regional income, economic state, and population
information while the NTSB provides all safety and accident related information. The BTS provides
a quarterly dataset. A detailed description of the variables we consider is presented in Table II. We
plan to publicly release our tools and data set in 2016.

Table II: Variables for predictions in related works
Market Share

ticket price average price of tickets sold by airline
frequency number of flights operated by airline
delay time average delay time of all flights operated by airline
delay ratio ratio of delayed flights to total number of flights by airline
cancel ratio ratio of canceled flights to total number of flights by airline

stop average number of stops of all flights by airline
safety number of casualties caused by past accidents of airline

craftsize average number of seats for a flight of airline
total seat total number of seats provided by airline during a quarter

Total Demand
avg. price average of all airlines’ ticket prices
population geometric mean of origin and destinations’ population

income geometric mean of origin and destinations’ income
CPI geometric mean of origin and destinations’ CPI

distance distance between origin and destination

ALGORITHM 1: ITER
1 Randomly assign values to pt−1 within
[pmin

i , pmax
i ]

2 repeat
3 for Ai ∈ A do
4 counter ← 0
5 pi,t ← Solution of Eqs.(3)-(5)
6 if |pi,t − pi,t−1| ≤ ε then

counter ++
7 pt−1 ← pt

8 until counter = n
9 return pt

4. ENSEMBLE PREDICTION MODEL
In this section, we design an ensemble-based predictor MAP-EF that produces highly accurate route-
specific predictions.
Overall architecture. Figure 2 shows the architecture of our ensemble model with 4 major steps.
Step 1 - Past Models with Regularization. In the first step, we use the MAP-dataset, in conjunction
with existing market share models (Market1 [Hansen 1990], Market2 [Suzuki 2000], Market3 [Wei

3We will revisit this point after Definition 5.2.
4BTS releases a 10% sample of route and airline specific ticket sales logs, from which average ticket price is obtained.
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Fig. 2: Structure of the MAP-EF prediction model. Rectangles mean data and elipses algorithms.
Each algorithm is marked with a processing sequence number. Solid lines mean inputs and dashed
lines outputs.

and Hansen 2005]) and demand models (Demand1 [Alperovich and Machnes 1994], Demand2 [B-
hadra and Wells 2005], Demand3 [Bhadra and Kee 2008]) in order to generate the predictions made
by models developed previously in the literature. These predictions are used as additional features.
In addition, we augment past models with regularization [Bishop 2006].5 Because this step is s-
traightforwardly built on top of past works, we do not go into it in further detail.
Step 2 - Nash Equilibrium. Ticket pricing clearly influences both market share and demand. More-
over, the competitive pricing behavior of airlines would have further influence. Thus, we include
equilibrium pricing calculated based on past models as an additional feature in MAP-EF. After this
step, each route has one feature table for market share prediction and another for demand prediction.
Each table6 includes a set of features collected from the MAP-dataset and from Steps 1 and 2.
Step 3 - Clustering of Similar Routes. We cluster all routes into groups of similar routes with the
features of the quarter we predict. For each group of routes, we concatenate all the individual route
tables constructed in Step 2 for all routes in that group. The merged tables are then used for training
within MAP-EF. We describe this step in further detail.
Step 4 - Iterative Gaussian Process Regression (GPR) and Random Sample Consensus (RANSAC).
After Step 3, we have a comprehensive MAP Feature Table. We use a combination of the well-known
methods of GPR [Rasmussen and Williams 2006] and RANSAC [Fischler and Bolles 1981]. To
make market share/demand predictions for a route R, this step trains only on data of the group that
contains route R, removes outliers with RANSAC, and then uses GPR to make the final prediction.
Nash equilibrium price feature. In a competitive airline market, the pricing behaviors of airlines
are strategic. To capture the competitive nature of the market, we include equilibrium price as an
additional feature7. The rationale behind this is that when an airline’s quoted price is higher/lower

5In past works for market share prediction, the authors minimize sum-squared-error (SSE), i.e. they try to find parameter
values for the math models that minimize ΣAi

(mi − m̂i)
2 where mi (resp. m̂i) is the true (resp. predicted) market share.

In addition to this, regularization minimizes
∑

Ai
(mi − m̂i)

2 + ||W ||, where W is a vector that consists of parameters
ηk (or λk for demand prediction) and ||W || is the norm of W . ||W || can be defined using either the L1 or L2 norm. Thus,
we have three options: SSE, SSE+L1 regularization, and SSE+L2 regularization. In order to decide the best model among
these, we use grid search and cross-validation. For cross-validation, we predict a quarter of the training data after training
with the remaining quarters regardless of temporal sequence, which creates n-fold cross validation, where n is the number
of quarters in the training data.
6Please refer to the Appendix for detailed examples of the merged table.
7Note that when computing the equilibrium price, the market share and total demand is the math formula obtained in Step
1, and the competition is only within a route.
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than its equilibrium price, the customer might lose/gain utility, which has influence on the cus-
tomer’s choice and thus further affects an airline’s market share. Therefore, we use the gap between
equilibrium price and real price as an additional feature. The utility (net income) N(Ai) of an air-
line Ai w.r.t. a specific route is N(Ai) = (pi − cpsgi ) · d ·mi, where pi is the ticket price and cpsgi
is the passenger-related per ticket cost obtained from the BTS dataset. d and mi are a route’s total
demand and airline Ai’s market share as described in Section 2. Recall that Nash equilibrium is
an equilibrium situation in a multi-player non-cooperative game, where each player is assumed to
know the equilibrium strategies of the other players, and no player has anything to gain by changing
only its own strategy. Following this definition, we formulate the computation of Nash equilibrium
strategy of each airline Ai ∈ A w.r.t. a given route:

maxpi N(Ai), (3)

subject to pmini ≤ pi ≤ pmaxi , (4)
d ·mi ≤ Qi. (5)

Eq.(4) specifies the feasible section of price, and Eq.(5) indicates that the total number of passengers
cannot exceed its capacity Qi. To compute equilibrium price on a route, we propose ITER (Iterative
meThod for nash EquilibRium computation) in Algorithm 1, where pt−1 and pt denote the optimal
price vectors of two subsequent “virtual” periods. The algorithm starts with an initialization of pt−1
within [pmini , pmaxi ], where pmini and pmaxi are the minimum and maximum possible prices quoted
by airline Ai. After this, iteration proceeds. In each repeat loop (Lines 2-8), the algorithm updates
optimal prices of all the airlines. Within each repeat loop, there is a for loop (Lines 3-7). In the for
loop, each airline alternately updates its optimal price pi,t based on the previous price vector p−i,t−1
of the other airlines in the last virtual period. It iterates until for each airline Ai ∈ A, the price is
not updating in two subsequent virtual periods (i.e., the difference between the two prices is no
larger than a small threshold |pi,t−pi,t−1| ≤ ε), which means a Nash equilibrium is obtained. Note
that the existence and uniqueness of Nash equilibrium prices are dependent on the utility function
N(Ai) (e.g., whether it is concave w.r.t. price). Due to the complex form of the utility function, it is
intractable to prove it analytically. However, the following theorem guarantees that if there exists an
equilibrium price, ITER always returns it, and our empirical results show that ITER always returns
a solution after a few iterations, which means that Nash equilibrium prices always exist.

THEOREM 4.1. If ITER returns a solution, then that solution is the Nash equilibrium price.

PROOF. In each repeat loop, ITER finds the best response of all players (airlines) given the
strategies of the last virtual period. When the best response strategies of all players in the current
virtual period are equal to the best response strategies of the last virtual period, a Nash equilibrium
is found according to the definition of Nash equilibrium.

Clustering similar routes. Some routes are more similar than others, e.g., LAX-JFK may show
more similar market attributes to SFO-JFK than LAX-SFO because the first two are long-haul routes
from west to east and the last one is a short-haul local route, and estimating market share/demand
would probably benefit from examining all of similar routes. In order to cluster routes, we use all fea-
tures gathered in the MAP-dataset, Steps 1 and 2. As we do not know the “ground truth” definition
of whether a cluster is correct or not, we evaluate cluster quality via silhouette score8 [Rousseeuw
1987]. The silhouette score tends to keep increasing (with some glitches) as the number of clus-
ters increases. The elbow method [Thorndike 1953] chooses the optimal number of clusters when
silhouette scores stabilize. We tested several clustering methods including K-Means++[Arthur and

8The silhouette score is to calculate the consistency of clusters. As more similar routes are contained by a cluster, its sil-
houette score is higher. If G is a set of clusters, dis is some distance (dissimilarity) measure, and e is some data item, the
silhouette score SS(e) =

b(e)−a(e)
max{a(e),b(e)} where a(e) is the average distance between e and the data items of the cluster it

belongs to, and b(e) is the minimum average distance between e and the data items of clusters it does not belong to.
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Vassilvitskii 2007] and connectivity-based and density-based clustering algorithms such as DB-
SCAN [Ester et al. 1996]. Of these, we achieved the best result with K-Means++.
RANSAC/GPR regression. Training with similar routes does not always contribute positively to
predictive accuracy. In several cases, it incurs additional error. We tested many linear regression al-
gorithms such as Ridge, Lasso, and Lars [Bishop 2006]. None of them produce stable performance
across multiple routes. We then tested a specially devised structure that consists of RANSAC and
GPR. RANSAC removes outliers from training data and GPR makes the final prediction only with
inliers. GPR is known to be robust because it is much less parametric than other methods. GPR
assumes that priors follow Gaussian processes, and the prior mean values are set to the same as the
training data means. The prior’s covariance is calculated based on a user-input covariance function,
i.e., kernel function, and the hyperparameters of the kernel function are optimized by maximizing
the log-marginal-likelihood. The final predictions for test cases are calculated using the covariance
matrix of all training and testing cases. The entire process can be described by a very complicat-
ed linear algebra form. RANSAC Regression is known to be robust w.r.t. noise. In the first step,
RANSAC performs regression with a small random subset of training data called hypothetical in-
liers. In the second step, all training data that do not fit the model constructed in the first step (in
terms of a user-specified loss function) are classified as outliers and others as inliers. These two
processes iterate over time to refine the set of inliers called the consensus set until the size of con-
sensus set is large enough. Thus, MAP-EF uses RANSAC with GPR as a base estimator. We show
prediction results of other regression techniques in the Appendix.
Time Overheads. In comparison with past models, MAP-EF should spend additional time for clus-
tering and more advanced regression methods, which takes cubic time of training data size.

5. AIRLINE PROFIT MAXIMIZATION VIA FREQUENCY ALLOCATION
In this section, we suggest how to maximize an airline’s profit by optimally allocating quarterly
frequencies to routes.

Definition 5.1 (Frequency Strategy). A frequency strategy of an airline A for a given set R =
{R1, . . . , Rn} of routes is a vector 〈fi〉 of non-negative integers.

Intuitively, the i’th element fi of the frequency strategy denotes the number of times the airline
should fly route Ri in a quarter. For a given airline A, a set R = {R1, . . . , Rn}, per flight cost Ci
for each route Ri, and total operation budget b, the profit maximization problem finds the frequency
allocation 〈fi〉 of A assuming its competitors’ behaviors are fixed. We also conduct experiments to
test the robustness of this approach when competitors change their strategies simultaneously.

Definition 5.2. The Frequency-based Profit Maximization Problem can be encoded as the
optimization problem:

max〈fi〉
∑

Ri∈R
Ni(fi) (6)

subject to 0 ≤ fi ≤ fmaxi , fi ∈ N, ∀Ri ∈ R (7)∑
Ri∈R

Cifi ≤ b. (8)

Ni(fi) is the profit of route Ri given frequency fi, which is ticket revenue ri(fi) minus total oper-
ation cost Cifi and can be calculated by the market share and total demand predicted by MAP-EF.
The ticket revenue is defined as price per ticket multiplied by airline A’s total passenger demand on
route Ri.

∑
Ri∈RNi(fi) is the sum of profits for all routes. Because routes (such as the SFO-LAX

and JFK-LAX routes shown in Figure 1) can differ dramatically in profitability, and as these num-
bers are basically estimated by our market share and demand prediction algorithms, it follows that
the individual terms Ni(fi) in our objective function can vary dramatically in form from one route
to another. This is what makes using a single form of objective function difficult. Constraint (7)
specifies the bound of frequency for each route as fmaxi and that the frequencies are non-negative
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integers. The frequency bound fmaxi = min(b bCi
c, fBTS), where fBTS is the maximum frequency

discovered in the BTS dataset, so that fi does not exceed the feasible frequency bound. Constrain-
t (8) indicates the budget constraint. As discussed in Section 2, this optimization problem belongs to
the hardest class of KPs and RAPs, mainly due to two reasons: i) the solution space is exponentially
large as Πif

max
i , and ii) the objective function is neither convex nor concave (thus not linear).

Before presenting the complexity analysis and the algorithms to solve MAP, we introduce two
important assumptions.

— Independence of Routes: we assume that varying the frequency of a route does not affect other
routes’ total demand and market share. This assumption is valid for most cases where the passen-
ger’s traveling pattern on one route is independent of the other routes.

— Monotonicity of Revenue and Cost: we assume revenue (resp. cost) is a monotonically increasing
non-linear (resp. linear) function of frequency. As shown in Figure 1, this assumption is intuitive.
Increasing frequency leads to larger market share (thus higher revenue) and higher operation cost.
Therefore, the monotonicity of revenue and cost does not imply the monotonicity of profit. This
prevents us from applying many well-developed algorithms for KPs and RAPs.

We show the computational hardness of the MAP problem with the following theorem.

THEOREM 5.3. The decision version of MAP (D-MAP) which answers the question “Is there a
frequency strategy whose profit exceeds a threshold P without violating budget b?” is NP-complete.

PROOF. We first show that there is a polynomial reduction from the Knapsack problem to D-
MAP. In the Knapsack problem, there are n items (each has pi profit and wi cost), budget limit W ,
a threshold V , and the objective is to find a set of items whose profit is no smaller than V without
violating budget W . This a special instance of D-MAP where b = W , P = V , Ci = wi and
the profit-frequency function of route Ri is linear with the slope of pi; and the reduction from the
Knapsack problem to profit maximization can be done in polynomial time.

Next, we show its correctness, i.e., Y is a yes instance of the Knapsack problem⇐⇒ X reduced
from Y is a yes instance for D-MAP.

“if” direction. Assume that there exists a solution s for a Knapsack problem instance. We can
create a frequency strategy 〈fi〉, where fi is the number of ith item in the solution s. s can achieve
a profit of at least V without violating budget W , and so is 〈fi〉 because b = W , P = V , Ci = wi
and the same linear profit function.

“only if” direction. Assume that a frequency strategy 〈fi〉 achieves a profit of at least P without
violating budget b. We can create a Knapsack solution s to select fi items for ith item. s is a valid
solution of the Knapsack problem because b=W,P =V,Ci=wi and the same linear profit function.

Finally, D-MAP is inNP because the verification process to check whether a frequency strategy’s
profit exceeds a threshold requires |R| oracle queries. Note that each oracle query takes a constant
time for a given route and airline. Thus, the verification process takes polynomial time.

Due to the computational complexity, it is intractable to find an optimal solution of the MAP
problem by performing brute-force search. As a result, we propose two new approaches: i) MAP-
BBB is a bi-level branch and bound method, and ii) MAP-G is a greedy algorithm operating over
groups of routes. Section 8 shows that these two algorithms have complementary performance in
terms of runtime (scalability) and optimality.

5.1. Bilevel Branch and Bound (MAP-BBB)
Branch and bound (BB) is a popular search algorithm for combinatorial optimization to efficiently
enumerate the entire solution space and find the optimal solution. The solution space of BB can be
represented by a rooted tree and each child of a parent node considers a subset of solution space
of its parent node. BB consists of a series of repeated branching and bounding processes. In the
branching process, the feasible solution space is divided into a number of smaller subsets, while in
the bounding process, an upper and a lower bound of the objective (airline profit in this problem) is
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derived for each subset of solution space. The largest lower bound is updated and, when the upper
bound of a certain subset is smaller than the current largest lower bound, that subset is pruned since
it does not contain the optimal solution. As we can see, the key of BB lies in finding a tight upper and
lower bound for the bounding process, especially for upper bound. While most of the BB algorithms
for Knapsack problems find upper bounds through linear relaxation [Martello and Toth 1977], the
complicated form of our prediction model prevents us from implementing such upper bounds. As
a result, we propose a novel Bilevel branch and bound (MAP-BBB) algorithm, which uses another
sub-BB search to find an upper bound for the main BB process.

Algorithm 2 shows the MAP-BBB algorithm that builds on classical branch and bound methods.
The search for an optimal solution explores a tree whose nodes are labeled with n intervals, one for
each of the routes R1, . . . , Rn under consideration. Intuitively, if a node is labeled with the interval
[`, u] for a particular route Ri, it means that we are currently restricting the frequency in the interval
[`, u] for that route. MAP-BBB also maintains a priority queueQ of all the nodes where the head has
the largest upper bound profit. The root node has the full range of [0, fmaxi ] for each route Ri ∈ R.
As we descend the tree, these intervals get smaller. In Figure 3, for example, the parent node np
is divided into two children nodes cl and cr, where the frequency range of the last route of np is
divided into two halves.

ALGORITHM 2: MAP-Bilevel Branch and Bound (MAP-BBB)
1 N∗ ← 0, 〈f∗i 〉 ← 0; Create root; MaxLB ← LBroot;
2 PriorityQueue Q← ∅; Q.enque(root)
3 while |Q| > 0 do
4 np ← Q.poll()
5 if np is divisible then
6 Create cl, cr
7 for c ∈ {cl, cr} do
8 if LBc > MaxLB and Cc ≤ b then MaxLB ← LBc

9 if UBc ≥MaxLB and Cc ≤ b then Q.enque(c)
10 else if N∗ < N(np) and Cnp ≤ b then
11 N∗ ← N(np); 〈f∗i 〉 ← frequency strategy of np

12 return 〈f∗i 〉, N∗

For the bounding process of child node c ∈ {cl, cr}, upper and lower bound profits of the optimal
strategy that can be defined with the frequency range of c are calculated (to be further described
below). If its lower bound LBc is larger than the temporary maximum lower bound, denoted as
MaxLB in Algorithm 2, and its lower bound cost Cc of the optimal strategy does not violate the
budget b, then we update MaxLB (line 8). If its upper bound UBc is no larger than MaxLB or
its lower bound cost Cc violates budget b, we prune this node (line 9). Once we find a node that
consists of only non-divisible ranges, i.e., min and max of ranges are all the same, and its cost is
within budget b, it is a candidate of the optimal frequency strategy. The optimal strategy is selected
among them (line 10). N∗ and 〈f∗i 〉 stand for the obtained optimal profit and optimal frequency
strategy, respectively.
Lower bound profit and lower bound cost. Calculating a lower bound of profit LBc and cost Cc
of node c is a key to the MAP-BBB algorithm. We choose the min frequency value for each route’s
range and calculate its lower bound profit and cost with MAP-EF. This is valid because the optimal
profit and the associated cost of node c are always no smaller than that.
Upper bound. As we cannot employ linear relaxation, upper bound calculation is more challenging.
For this, we use another branch and bound process, which is why the proposed algorithm is called a
bilevel branch and bound. For each range of Ri in node c, we perform the following sub branch and
bound process to find its optimal frequency within the range without a budget constraint. This is
good because the optimal profit without budget limit is definitely no smaller than the optimal profit
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Fig. 3: An example branch and bound process for MAP-BBB with three routes. Each blue bar of
node represents a frequency range. Lower BB is used to calculate an upper bound profit of a node.
cl and cr are two children of the parent node np.

with budget constraint and it is much faster than the upper bound with budget check across multiple
routes. We omit its pseudo code because it is more or less the same as Algorithm 2 except that the sub
branch and bound does not check budget violation. In order to distinguish two branch and bounds,
we use different terms sub and main. The sub root node is initialized with the specified range of Ri.
During the sub branching process, we equally divide a sub node interval into two halves and create
two sub children nodes. In the sub bounding process of a sub node, the heuristic for computing a
lower bound of the sub branch and bound is defined as ri(frandom) − Cifrandom, where frandom
is a random frequency in the frequency range. This holds since any feasible frequency generates a
lower bound of the optimal profit. The heuristic for computing an upper bound of the sub branch
and bound is ri(fmax)−Cifmin, where fmax and fmin are the maximum and minimum frequency
of the sub node, which utilizes the monotonicity of revenue and cost. The sum of maximum profits
calculated for each route with the sub branch-and-bound without budget constraint is always no
smaller than that with a budget, thus sub branch-and-bound provides an upper bound profit of the
main node. With the lower and upper bounds derived above, MAP-BBB eliminates only non-optimal
frequency strategies of routes, which proves correctness and optimality of MAP-BBB. We show the
best-case complexity analysis of MAP-BBB:

THEOREM 5.4. The best-case runtime complexity of MAP-BBB isO((log(max{fmaxi }))2×n),
where n is the number of routes.

PROOF. The best-case complexity of the bi-level branch and bound algorithm happens when
in each branch and bound process, one of the children nodes is pruned. For each route Ri, its
maximum frequency is fmaxi and it takes log(fmaxi ) branches until the frequency in this route
is nondivisible; for all routes, it takes max{fmaxi } × n time. While for each branch it needs at
least O(log(max{fmaxi })) time to solve one sub branch and bound. Thus, the total complexity is
O((log(max{fmaxi }))2 × n).

The worst-case complexity happens when there is no pruning in each branch and bound process.
however, the experimental results in Section 8 show that this never happens and the average runtime
of MAP-BBB is promising.

5.2. Greedy Algorithm (MAP-G)
As MAP is NP-hard, it is clear that the exact algorithm MAP-BBB may not be scalable. In this sec-
tion, we propose a greedy algorithm to solve MAP more efficiently while sacrificing optimality. A
naive greedy algorithm is to increase the frequency of the route with the largest marginal profit/cost
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ratio (PCR) which is known to work very well for conventional knapsack problems. However, un-
like conventional knapsack problems where PCR is fixed (i.e., linear objective function), the PCR in
our problem fluctuates as can be seen from the example in Figure 4. According to our experiments,
this naive greedy approach on average achieves only 0.66 of the optimal profit.

Fig. 4: Best PCR among all routes in each iter-
ation of the naive greedy Knapsack algorithm.

ALGORITHM 3: MAP-G
1 N∗ ← 0, 〈f∗i 〉 ← 0

2 G ← divideR into bn
k
c groups

3 bg ← δ, ∀g ∈ G;
4 while

∑
g∈G bg ≤ b do

5 for g ∈ G do
6 〈f∗g 〉 ← solve MAP of g with budget bg
7 g∗ ← the best PCR group
8 〈fi〉 ← merge({〈f∗g 〉|g ∈ G})
9 bg∗ ← bg∗ + δ;

10 if N∗ < N(〈fi〉) then 〈f∗i 〉 ← 〈fi〉
11 return 〈f∗i 〉, N∗

To address the fluctuating PCRs, we suggest an improved “Group-Greedy” algorithm (MAP-G).
The basic idea of MAP-G is that, instead of greedily raising the frequency of a single route with
the largest PCR, MAP-G first divides routes into groups, and then compares the PCRs of different
groups and raises frequencies of the group of routes with the largest PCR. As shown in Algorithm 3,
it randomly divides n routes into bnq c groups (line 2), each consisting of q routes9. Initially, each
group is assigned small budget δ (line 3) and we independently solve MAP within each group,
using exact algorithms such as MAP-BBB as a sub-routine (line 6). We merge all groups’ most
recent frequency strategy to create a complete frequency strategy of all routes (line 8), and its profit
is compared with the temporary maximum profit (line 10). The budget of the group that creates
the largest marginal profit density is increased by δ (line 9). This process iterates until the sum of
groups’ budgets equals to the total budget b. This method is robust w.r.t. the fluctuating PCR because
we calculate the optimal strategy for each group in each iteration. On the other hand, calculating
optimal frequency strategy for a group of routes is much faster than that of all routes because the
solution space is much smaller. We set δ = b × 1

h , where h > 1 is an integer. The quality of the
solution increases as q increases — if q = n and h = 1, it finds the optimal solution. The benefit
of a small q is the short runtime, while sacrificing optimality. By adjusting q, MAP-G can trade-off
between runtime and optimality.

6. EXTENSIONS OF THE FREQUENCY-BASED PROFIT MAXIMIZATION PROBLEM
In the above section, we formalized a basic frequency-based profit maximization problem and pro-
posed two search algorithms to solve the problem. In this section, we introduce two extensions of
the basic problem, i.e., considering bounded frequencies and future profits.

6.1. Bounded Frequency
As shown in Figure 1, the profit function of an airline is rather irregular. For some routes, it is
even monotonically decreasing (increasing) w.r.t. frequency. For these routes, we find out that the
optimal frequency values computed by the proposed algorithms are rather small (large), with an
abrupt decrease (increase) compared with the flight frequency strategy of the last quarter. While in

9The actual number of routes in a group may slightly vary due to the floor operation.
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practice, even if it is more profitable to change the frequency by a large number, airlines tend to
be conservative and make only bounded changes to the frequencies. Interestingly, the BTS data set
shows that, in some extreme cases, airlines maintain their flight frequency on a route even when
profit is negative. As a result, we vary the constraint in Eq.(7) and introduce tighter frequency
bounds:

f0i (1− α) ≤ fi ≤ f0i (1 + α), (9)

where f0i is the frequency on a route Ri in the last quarter, and α ∈ [0, 1] is a bounding factor
which indicates the “conservativeness” of an airline. With the new bounded frequency constraint, in
the adapted MAP-BBB (MAP-BBB1), the root node’s frequency range should be altered [f0i (1 −
α), f0i (1 + α)] and the remaining steps of MAP-BBB are the same.

COROLLARY 6.1. The best-case runtime complexity of the adapted algorithm MAP-BBB1 is
O((log(2αmax{f0i }))2 × n), where n is the number of routes.

PROOF. According to Theorem 5.4, the runtime runtime complexity of searching each route Ri
is O((log(max{fmaxi − fmini }))2 × n). In MAP-BBB1, fmaxi = f0i (1 + α), fmini = f0i (1 − α).
As a result, the best case runtime complexity of MAP-BBB1 is O((log(2αmax{f0i }))2 × n).

6.2. “Potential” Long Term Profits
Another interpretation of airlines’ “conservativeness” in changing (decreasing in particular) their
frequency strategies is that, for some highly competitive routes, these airlines (especially large air-
lines) are hoping to maintain their market share with relatively large frequency numbers. The main-
tained market, which may not be profitable in the current stage, will “drive off” the other competing
airlines and bring potential profits in the future. To better capture this property, we add an extra
linear term (w.r.t. frequency) in the objective10:

max〈fi〉
∑

Ri∈R
Ni(fi) + βifi (10)

subject to f0i (1− α) ≤ fi ≤ f0i (1 + α), fi ∈ N,∀Ri ∈ R (11)∑
Ri∈R

Cifi ≤ b. (12)

βi > 0 is a route-dependent factor indicating the extent to which future market share is important to
the airline. Note that we also set bounded frequency in this extension (as indicated by the constraints
in Eq.(11)). With larger frequency, one airline may not have larger immediate profit, while in the
new objective, the linear term, which increases w.r.t. frequency, indicates the “potential” increase of
future profits.

It is guaranteed that with positive βi values, the term βifi monotonically increases w.r.t. fi.
Therefore, by merging this term with the revenue term ri(fi), the monotonicity of the combined
term ri(fi) + βifi is inherited. Inspired by this, we replace ri(fi) with ri(fi) + βifi in the sub
branch and bound (sub BB) process, and the upper bound of sub BB is represented as ri(f0i (1 +
α)) + βif

0
i (1 +α)−Cif0i (1−α). With this adaptation, sub BB finds a proper upper bound for the

main BB process and the adapted bilevel branch and bound algorithm (MAP-BBB2) still works.

COROLLARY 6.2. The best-case runtime complexity of MAP-BBB2 is stil-
l O((log(2αmax{f0i }))2 × n), where n is the number of routes.

10Although potential future profits cannot be precisely measured with the simple linear term, to some extent, it does reveal
an airline’s concern of long term profit maximization. To better study this, a more complicated model (e.g., using MDPs
to formulate long term profits of a series of future quarters or data mining/maching learning methodologies to obtain profit
function of a series of future quarters w.r.t. current frequency) should be applied. We leave the long term profit maximization
problem as future research.
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ALGORITHM 4: ITER-Freq

1 Randomly assign values to 〈fi,A〉 within [f0
i,A(1− α), f0

i,A(1 + α)]
2 repeat
3 for Ai ∈ A do
4 counter ← 0
5 f ′i,A ← Solution of Eqs.(13)-(15)
6 if |fi,A − f ′i,A| ≤ ε then counter ++
7 〈fi,A〉 ← 〈f ′i,A〉
8 until counter = n
9 return 〈fi,A〉, ∀A ∈ A

PROOF. With the adaptation in the sub BB process, the runtime for the searching process of each
route is the same with MAP-BBB1.

7. MULTIPLE STRATEGIC AIRLINES AND NASH EQUILIBRIUM FREQUENCY STRATEGIES
Previously, we assume that only one airline is strategic in deciding its frequencies of a certain set of
routes R, which may not be true in practice. In this subsection, we investigate the case where mul-
tiple airlines are strategic and change their frequencies using our proposed frequency-based profit
maximization algorithm and optimally respond to the current frequency strategies of the other air-
lines. The selfish and strategic behaviors of the competing airlines result in a non-cooperative game
among the airlines, for which Nash equilibrium is a natural solution concept. Recall the definition
of Nash equilibrium in Section 4, in a Nash equilibrium, the frequency strategies of the each airline
A ∈ A satisfy

max〈fi,A〉
∑
Ri∈R

Ni,A(fi,A), (13)

subject to f0i,A(1− α) ≤ fi,A ≤ f0i,A(1 + α), fi,A∈N,∀Ri ∈ R (14)∑
Ri∈R

Ci,Afi ≤ bA. (15)

We add a subscript A in fi, f0i , Ci and b to distinguish different airlines. We adapt Algorithm 1,
and propose ITER-Freq (ITER w.r.t. Frequency strategies) to compute Nash equilibrium frequency
strategies, which is shown in Algorithm 4. First, we initialize the frequency of each airlineA for each
routeRi by randomly assigning a value within a bounded frequency range [f0i,A(1−α), f0i,A(1+α)].
In the repeat loop (Lines 2-8), it updates the optimal frequency strategies of each airline with the for
loop (Lines 3-7) and terminates until that, for each airline A and for each route Ri, the difference
between the updated frequency value f ′i,A and the original value fi,A is within a small bound ε.
Note that after each iteration, the predicted profit function (i.e., MAP-EF) is updated with the new
frequency values of the corresponding airlines. To do this, the features described in Section 4 are
also updated.

THEOREM 7.1. If ITER-Freq returns a solution, then that solution is the Nash equilibrium
frequency.

PROOF. In each repeat loop, ITER-Freq finds the best response of all airlines given their strate-
gies of the last iteration. When the best response strategies of all airlines in the current iteration are
equal to the best response strategies of the last iteration, a Nash equilibrium is reached according to
its definition.

The existence and uniqueness of Nash equilibrium heavily depend on the shape (e.g., concave,
convex) of the profit functions of the competing airlines. Unfortunately, the profit functions are
represented with a very complicated linear algebra form, and thus it is infeasible to analytically study
the existence and uniqueness of Nash equilibrium frequencies. At the same time, it is known that
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the runtime complexity of iteration-based computation of Nash equilibrium is unpredictable, while
in practice, it normally takes a few number of iterations before convergence of equilibrium (if there
is). As a result, we leave further discussion to Section 8 and study these two aspects experimentally.

8. EXPERIMENTAL RESULTS
In this section, we first compare MAP-EF with several benchmark methods for both route demand
and airline market share prediction. We then show the improvement of the optimal profit obtained
based on MAP-EF prediction compared with that based on traditional methods. Last, we compare
both scalability and optimality of our proposed algorithms with several benchmarks.

8.1. Market Share & Total Demand Prediction
8.1.1. Experimental Environment. For route-specific predictions, we selected the 700 largest

routes in terms of the number of passengers. We predicted market share and total demand for the
first quarter of 2015, the most recent period for which all data are available, after training with 10
years data up to the last quarter of 2014. We tested 3 pre-existing prediction models for both market
share and total demand as described in Section 2, and our proposed method MAP-EF.

For each route, we evaluated with the following three criteria: i) Correlation Coefficient (CC), ii)
R2, and iii) Mean Absolute Error (MAE) divided by the maximum market share value of a route or
divided by true total demand value. These two metrics are much stricter than pure MAE values. A
good predictor will perform well under all three metrics.

8.1.2. Experiment Results. Market Share. Table III (resp. Table IV) summarizes mean values
(resp. variances) of the three metrics for all routes (All) and for routes with 4 or more operating
airlines (|A| ≥ 4) — as the number of airlines increases, predictions become more challenging.
Among existing models, Market1 shows the best performance. Its CC of 0.82 is quite reasonable
with low variance around 0.18, but its poor R2 of −0.84 indicates some issues. Two metrics reveal-
ing contradictory results indicates that the rise/decline of the predicted values may have high error.
Thus, Market1 can tell us which airline has larger market share than another, but its absolute market
share value is not reliable. Profit optimization based on the best competitor, Market1, does not make
sense because even a small error in predicting market share may lead to a high loss in profit. As
shown in Tables III and IV, MAP-EF shows very stable performance in terms of both mean and
variance for all metrics, especially when |A| ≥ 4. Note that for all tables, ↑ indicates that larger
values are preferred and vice versa. The best method is highlighted in yellow.

Table III: Mean values of CC, R2 and
MAE/Max for market share predictions.

All |A| ≥ 4

CC(↑) R2(↑) MAE CC(↑) R2(↑) MAE
/Max(↓) /Max(↓)

Market1 0.82 -0.84 0.133 0.82 0.18 0.157
Market2 0.48 -3.51 0.188 0.62 -1.92 0.212
Market3 0.34 -6.96 0.27 0.44 -3.99 0.32
MAP-EF 0.96 0.88 0.052 0.95 0.89 0.046

Table IV: Variance of CC,R2 and MAE/Max of
Market Share Predictions.

All |A| ≥ 4

CC(↓) R2(↓) MAE CC(↓) R2(↓) MAE
/Max(↓) /Max(↓)

Market1 0.18 132.2 0.06 0.09 4.29 0.08
Market2 0.54 109.7 0.08 0.31 26.77 0.09
Market3 0.55 964.9 0.10 0.35 38.66 0.10
MAP-EF 0.03 0.12 0.01 0.01 0.05 0.01

Total Demand. Whereas route-specific market share prediction is a list (one value for each airline),
total demand prediction of a route is a scalar value. Thus, we create two lists, one of true demand and
one of predicted demand, and perform CC and R2 analysis. MAE divided by true demand can be
measured for each route and its mean and variance are also summarized in Table V. Again, MAP-EF
shows better performance than all other methods.
Effectiveness of additional features in MAP-EF. In order to evaluate the effectiveness of the e-
quilibrium price feature (Step 2 in Figure 2) and route clustering (Step 3 in Figure 2), we created
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CC(↑) R2(↑) MAE/True MAE/True
(Mean,↓) (Variance,↓)

Demand1 0.77 0.31 0.29 0.06
Demand2 0.49 -1.4 0.57 0.1
Demand3 0.56 -0.8 0.49 0.08
MAP-EF 0.98 0.96 0.07 0.004

Table V: CC, R2 and MAE divided by true de-
mand of Total Demand Predictions. Note that the
variance of CC and R2 cannot be defined because
it predicts a scalar value for each route.

Fig. 5: Profit maximization with different pre-
diction methods (relative to MAP-EF) and
90% confidence interval is shown

two simpler prediction models — one without Step 2 and the other without Step 3. On average, the
model without the equilibrium feature achieved 88% (resp. 93%) of the full model’s CC (resp. R2),
while the model without the clustering achieved 90% (resp. 72%). All these results indicate that
profit maximization should be based on the prediction results of MAP-EF, while “optimal” strate-
gies obtained with other models are more likely to be far from real optimal strategies. Nevertheless,
we note that MAP-EF builds upon other pre-existing prediction models’ findings and hence we build
on top of these prior scientists’ work.

8.2. Profit Maximization
8.2.1. Experimental Environment. We performed experiments on a cluster of 64 machines running

Linux with 2.4GHz Xeon CPU and 24GB RAMs. We selected six major airlines and calculated the
optimal frequency allocation strategy for their top K biggest markets (a market means an origin-
destination pair, i.e., a route). We retrieved real budget information of routes from the BTS dataset
such that budget for a set of routes is the sum of their real budgets. For the scalability test, we chose
the number of markets K = {2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30}. We compare the proposed MAP-BBB
and MAP-G with two benchmark algorithms, namely N-Greedy (naive greedy algorithm) and DP
(dynamic programming). DP is a well-known approach for KPs and RAPS and we refer to Appendix
for a detailed description of DP. MAP-BBB is the proposed bilevel branch-and-bound algorithm.
We used MAP-BBB as subroutine for MAP-G to solve the profit maximization subproblem in each
group.

8.2.2. Maximum Profit of Different Predictors. Ground truth is not available for the true maximal
profit an airline could possibly make as their actual quarterly profit may not reflect the total profit
that they could have maade. In theory, MAP-BBB is guaranteed to produce the maximal profit
under the assumptions made in our model. As we see below, MAP-BBB works when the number of
markets is relatively small. In order to explore the profits obtained using predictions made by pre-
existing market share predictors [Hansen 1990; Suzuki 2000; Wei and Hansen 2005], we compare
them with the profits obtained using the MAP-EF predictor. We also obtain the optimal frequency
allocation strategies using MAP-BBB for K ≤ 6 based on different prediction methods, and then
calculate the corresponding profit of these strategies using MAP-EF (for larger K, MAP-BBB, as
an exact algorithm, takes an inordinate amount of time). As shown in Figure 5, the optimal profit
obtained by all existing methods has a gap of around 30% compared with MAP-EF, which is a huge
amount considering the scale of profit (typically several million dollars per route per quarter).

8.2.3. Comparing Different Optimization Algorithms. In this subsection, we first compare several
algorithms which are targeted at small K (number of markets) values, such as DP, MAP-BBB,
and N-Greedy. Using these algorithms as subroutines, we then tested the performance of MAP-G
with large K values. Average optimized profits of airlines and runtime are summarized in Figures 6
and 7. “Real” stands for the average profit of airlines calculated with real frequency strategies in the
BTS dataset. Interestingly, “Real" shows worse results than even the simple N-Greedy. We see that
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(a) (b)

Fig. 6: (a) Optimized profits and (b) Runtime for K ≤ 6.

(a) (b)

Fig. 7: (a) Optimized profits and (b) Runtime for K ≥ 5,
with the number of routes in a group as h = 100.

past market share models can only capture about 75% of the profit generated by MAP-EF. This is a
substantial loss in absolute dollars.
Profit and Runtime Analysis for K ≤ 6. As we can see from Figure 6 (a), since both DP and
MAP-BBB are exact algorithms, their maximum profit values are the same and are the largest.
However, DP’s runtime, shown in Figure 6 (b), grows exponentially and we could not finish it on
time for K ≥ 4. N-Greedy cannot achieve a reasonable profit. When K = 2, it has around 70%
of the optimal profit calculated with exact algorithms; as K increases, however, it decreases to only
60%. Before K = 5, MAP-BBB can find the optimal profit in a few seconds while DP takes around
10,000 seconds in average. This is due to its pseudo polynomial runtime, which behaves more like
exponential runtime than polynomial time. This indicates that MAP-BBB scales really well. The
MAP-BBB is more suitable as the subsolver of MAP-G.
Profit and Runtime Analysis for K ≥ 5. Table VI shows the optimality of MAP-G when K =
4, 5 or 6. The exact maximum profit when K ≥ 7 cannot be computed as the exact algorithms
either run out of memory or take inordinately long. But in cases when K ≤ 6, MAP-G achieves
99% of the maximum profit suggesting that it does very well. As expected, MAP-G is robust w.r.t.
the problem of fluctuating profit and independent processing of each route from which N-Greedy
suffers. Figure 7 (a) shows that MAP-G is consistently better than N-Greedy and N-Greedy obtains
only about 70% of MAP-G’s profit, suggesting that MAP-G is far superior. We confirm that q = 3
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Table VI: Profit maximization of MAP-G(BBB) with q = 3 (relative to the optimal profit).

K = 4 K = 5 K = 6
Profit 0.99 0.97 0.99

(i.e. groups of similar routes are limited to have 3 routes in them) leads to an increase in profit than
when q = 2 for MAP-G — in Figure 7 (a), MAP-G with q = 3 is consistently better than q = 2 —
which corresponds to our conjecture that optimality will be improved as the size of groups increases.

The profit increase from “Real” to the optimized one is quite impressive. Airlines can increase
their profits by at least 55% by adopting MAP based on our model with available data. But please
note that we assume the behaviors of other airlines are fixed, which is not the case in reality. In the
following, we will test the robustness of MAP, i.e., when the frequency and pricing strategies of
other airlines also vary (and not known in advance), how much profit can be achieved by the airline
to be optimized.
Robustness Analysis. In the above experiments, we assume that the frequency allocation and pric-
ing strategies of all other airlines are fixed and known in advance. We now test the robustness of
our approach, i.e., we test the airline profits obtained by our approach when the frequency and pric-
ing strategies of other airlines vary. To do this, we randomly varied price (resp. frequency) by a
rate in {[−20%,−10%), [−10%, 0), 0, [0, 10%), [10%, 20%]}. We first compute the optimal strat-
egy by assuming that the other airlines’ behaviors are fixed (because they are unknown). We then
evaluate this obtained optimal strategy with the prediction model of the changed price and the fre-
quency strategies of other airlines. We computed the ratio of the sub-optimal profit (not knowing
other airlines’ price/frequency changes) to the optimal profit (knowing the changed price/frequency
strategies of other airlines) — in order to calculate the exact optimal profit on time we tested K
up to 6. For each frequency and price change rate combination, we generated 30 scenarios with all
different random seeds and profits are averaged on them. As shown in Figure 8, this profit ratio
is always larger than 0.8, which indicates robustness of our MAP approach even with a 40% fluc-
tuation of both price and frequency. Moreover, it is shown that for a fixed frequency change rate,
the profit ratio is almost the same for all price change rates, which means that frequency change is
more effective in airlines’ competition. Last, the largest ratio happens in the case that competitors
increase frequencies, which means MAP is more effective at competitive markets.

Fig. 8: Profits by varying price and frequency
of other competitors

Fig. 9: Ratio of optimal profits for bounded
frequency and unbounded frequency.

8.3. Extensions of Profit Maximization
Bounded Frequencies. Figure 9 shows the averaged optimal profit values of airlines operating on
different number of routes with varying frequency ranges, where the x-axis represents different
values of α from 0 to 0.8 (recall that the frequency range is set as [f0i (1−α), f0i (1+α)]), the y-axis
represents the optimal profit with bounded frequencies (related to the optimal profit with unbounded
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frequencies), and the K value in the legend means the number of routes. With larger α values (i.e.,
larger frequency ranges), the airlines can obtain larger short term profits. While in practice, airlines
normally do not make abrupt changes in their flight frequencies – even when larger changes in
profits may lead to more profits, which implies the “conservativeness” of airlines.
Considering Potential Profits. To evaluate the effect of airlines’ concern on potential profits, we
first compare the optimal profit obtained in the extended profit optimization problem in Eqs.(10)-
(12) with that computed by the basic profit optimization problem in Eqs.(6)-(8). To reveal different
extent of importance of potential profits, we set βi as the airline’s per flight cost of a route Ri
multiplied by a varying factor β. As shown in Figure 10, the x-axis denotes different β values
from 0.4 to 0.8, and the y-axis denotes the ratio of profits obtained by the above two optimization
problems, and K denotes the number of routes considered.

Fig. 10: Ratio of optimal profits. Fig. 11: Ratio of frequency values.

As we can see, the profit ratio is always smaller than 1, and it decreases w.r.t. the value of β.
Meanwhile, Figure 11 shows the ratio of the averaged optimal frequency values obtained by the
extended profit optimization problem and the basic profit optimization problem. For all β values,
the frequency ratio is always larger than 1, and it increases w.r.t. the value of β. Combining these
two figures, we can see that 1) when future profit is taken into consideration, airlines do not “rush”
for immediate profit, and 2) when airlines put more weight on potential profits, they tend to invest
more on the flight frequencies even it is not more profitable currently.

8.4. Equilibrium Frequencies
In this part, we evaluate the convergence behavior and profits obtained with Nash equilibrium fre-
quency. To do it, from the 5 largest airlines (denoted as A1, A2, A3, A4, A5) in the US, we select 3
out of them which we assume are strategic and use Nash equilibrium frequency strategies, and then
evaluate when these 3 airlines are competing over different number of routes (K = 1, 2, 3). Since
there are in total 10 combinations of airlines (C5

3 = 10), for each number of routes, all the following
results are averaged over 10 cases. Table VII shows the percentage of convergence11 to equilibrium
and, if a case converges, the averaged number of iterations required to reach the equilibrium (not
counting the cases where it does not converge). For percentage of convergence, the number in the
denominator means the number of cases reported. Note that for K = 3, this number is not equal
to 10 because for one case, not all of the three airlines are operating over the same three routes si-
multaneously. We note that some cases do not converge to a Nash equilibrium within 10 iterations.
However, for those cases which do converge, they converge very quickly – 1.8 to 2.4 iterations on
average. Our interpretation for the cases which do not converge is that, for these routes, the profit
function of certain airline(s) obtained with our MAP-EF method is not concave, and the frequency

11Note that we regard a case as not able to reach Nash equilibrium when the ITER-Freq algorithm does not converge within
10 iterations.
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values are restricted to natural number. We prove in the following theorem (Theorem 8.1 that, when
the frequency domain is relaxed to continuous and the profit function of each competing airline is
concave, Nash equilibrium always exists.

THEOREM 8.1. When the frequency domain of airlines (described in Eqs.(14)-(15)) is relaxed
from natural number (i.e., fi,A ∈ N) to positive real number (i.e., fi,A ∈ R+), and the profit function∑
Ri∈RNi,A(fi,A) of each airline A is concave w.r.t. its frequency strategy fA, Nash equilibrium

(w.r.t. frequency) always exists.

PROOF. Denote the domain described in Eqs.(14)-(15) (with linear relaxation) as D. Accord-
ingly, DA denotes the domain for each airline A and D−A denotes the domain for all the other
competing airlines A ∈ A except A. For each airline A as a player, given the frequency strategies
f−A of all the other competing airlines, it will select an optimal frequency strategy which maximizes
its profit function, which is a mapping φA : DA → D−A defined as φA(f−A) = fA. Furthermore,
according to Eqs.(14)-(15), both the domain and range of the mapping φA(f−A) are compact (closed
and bounded). Combining the compactness of the domain and range of the mapping with the con-
cavity of airline A’s profit function

∑
Ri∈RNi,A(fi,A), it is guaranteed that the mapping φA(f−A)

is non-empty (existence). The compactness of D−A along with the linear relaxation also implies
that the mapping φA(f−A) is upper hemicontinuous.

The existence and upper hemicontinuity of the mapping φA(f−A) are naturally inherited by the
mapping φ : D → D defined as φ(f) = ×A∈AφA(f−A), where f is a matrix which denotes the
frequency strategies of all the competing airlines. In addition, Eqs.(14)-(15) (with linear relaxation)
imply that D is a simplex (and closed). Applying Kakutani’s fixed point theorem [35], we conclude
that there always exists a fixed point f in the domainD which maps to a same point f in the rangeD
with the mapping φ(f). As a result, with the above stated linear relaxation and concavity assumption,
the Nash equilibrium (w.r.t. frequency) always exists.

It is worth mentioning that, in this problem, the concavity of airlines’ profit functions is not a
necessary condition (but only sufficient condition) of the existence of Nash equilibrium. Nonethe-
less, evidence (e.g., Figure 1 where profit airlines’ functions of one route are displayed) shows that
the profit functions of airlines are sometimes non-concave, which we think is a major reason why
some cases do not converge to equilibrium within 10 iterations. However, it is still possible that
Nash equilibrium still exists when the profit functions of some competing airlines are not globally
concave, but for example, are locally concave.

Table VII: The convergence behavior of Nash equilibrium frequency.

K 1 2 3
Percentage of convergence 5/10 4/10 5/9

Number of iterations 1.8 2 2.4

Table VIII: The profits obtained by airlines under equilibrium.

airline K 1 2 3

A1 [1.27,1.30] [1.37,1.44] [1.36,1.43]
A2 [2.18,2.73] [2.81,2.94] [2.30,2.27]
A3 [1.51,1.56] [1.58,1.75] [1.46,1.69]
A4 [N/A] [N/A] [1.34,1.27]
A5 [1.33,1.67] [1.14,1.30] [2.51,2.90]
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To evaluate the profits obtained by airlines with equilibrium strategy, we compare the profits of
the airlines for three situations: 1) airlines use current frequency strategy; 2) only one airline is s-
trategic; and 3) multiple airlines are strategic. As shown in Table VIII, we show the profits obtained
by the 5 airlines over different number of routes. For each cell in the table, the left number in the
bracket denotes the ratio of profits of the second and first situations, while the right number de-
notes the ratio of profits for the third and first situations. Note that N/A means not applicable. This
is because for K = 1 and K = 2, all the cases where airline A4 is involved do not converge to
equilibrium and thus we do not record the profits of these cases. All the profit ratios are averaged
among the cases where equilibrium frequencies converge. For example, for airline A1 and K = 1,
if in 4 out of 6 (= C4

2 ) cases the equilibrium frequencies converge, both the left and right profit ratio
numbers in the for A1 and K = 1 are averaged over 4 cases. As we can see, first, for all number
of routes and all airlines, the profits obtained in both the second (only one airline is strategic) and
third (when multiple airlines are strategic) situations are larger than that obtained in the first situa-
tion (airlines use current frequency strategy). Second, it shows that, somewhat counter-intuitively,
with a few exceptions (highlighted with yellow), the profits obtained when multiple airlines are s-
trategic are mostly even larger than those obtained when only one airline is strategic. Note that this
result is applicable under the assumption that each airline is only optimizing one-shot profit. When
each airline is only concerned about short term profit, instead of “competing” with each other by
increasing frequencies, airlines tend to “concede” and decrease their frequencies for routes that are
non-profitable. This result, together with Figures 9 - 11, is a vast improvement that provides an en-
lightenment to the researchers for a more precise profit prediction model which takes into account
not only profits in the current period, but also profits in the future.

9. CONCLUSION AND FUTURE WORK
In this paper, we propose the MAP framework for optimal frequency allocation over multiple routes.
We make three key contributions. i) We design a novel ensemble predictor based on past regression-
based work, clustering techniques and game theoretic analysis, which have never been utilized for
this purpose; ii) based on the prediction, we design several algorithms to solve the profit maximiza-
tion problem; iii) we conduct extensive experiments. We show that the prediction performance of
MAP-EF is much better than past methods. We also compare runtime and optimality of our proposed
optimization algorithms with benchmarks. We also show that MAP increases profitability per route
by at least 55%. Even if there are factors we did not consider on the basis of open source data and
these numbers are reduced substantially if private airline data was to be used, the increased prof-
itability would still be substantial. Furthermore, we show that considering bounded frequencies and
future profits, the one-shot profit might be less compared with that without these concerns, which
to some extent reveals the practical implications of the current airline industry – airlines are usually
“conservative” in changing their frequencies and concern more about long term profits. Last, we
show the optimal frequencies and profits of airlines when there are multiple strategic airlines.

We consider two potential directions for future work. First, our current optimization considers
only frequency allocation. In the future, we may also consider joint-optimization over frequency
and pricing. However, the monotonicity property of revenue and cost is not guaranteed with ticket
pricing12 and it is already one of the hardest KPs and RAPs with only frequency being considered.
Second, we currently use a simple linear term (w.r.t. frequency) to evaluate the effects of current
frequency strategies on future profits, which has limited veracity to represent long term profits. To
more explicitly model future profits, a more realistic model should be employed, such as MDPs,
POMDPs or more sophisticated data mining/machine learning methodologies.
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APPENDIX
A. FEATURE TABLES GENERATED AFTER STEP 2 OF MAP-EF
Tables IX and X separately present the example tables of variables for market share and total demand
prediction, which are generated in Step 2 of MAP-EF. We take Table IX as an example to illustrate.
In this table, the first 4 columns (“Route, Quarter, Airline, Existing Variables”) are existing features
which are also used by past works. Column 5 is the output in Step 1 of MAP-EF, including the
parameter values ηk in the math model and the intermediate predicted market share values. Column
6 is the difference between Nash equilibrium price and the real price of an airline, which is obtained
in Step 2. The highlighted last column (“True market share”) indicates the dependent variable which
is to be predicted. Based on both the market share related features extracted in Table IX and the
demand related features in Table X, we further employ clustering techniques in Step 3 to find similar
routes.

Table IX: Variables to predict airline market share of R1 by MAP-EF. “True Market Share” (highlighted) is the dependent variable to
be predicted.

Route Quarter Airline Existing Variables Outputs of Step 1 Equil. Price− Real Price True Market Share
R1 2010Q1 A1 Price, Freq, Delay, · · · 15% (Predicted value), ηk (Parameters) -50 10%
R1 2010Q1 A2 Price, Freq, Delay, · · · 85%,ηk 60 90%
R2 2010Q1 A1 Price, Freq, Delay, · · · 11% (Predicted value), ηk (Parameters) -10 5%
R2 2010Q1 A2 Price, Freq, Delay, · · · 89%,ηk 50 95%

...
...

...
...

...
...

...

Table X: Variables to predict total demand of R1 by MAP-EF. “True Total Demand” (highlighted) is the dependent variable to be
predicted.

Route Quarter Existing Variables Outputs of Step 1 Equilibrium Price True Total Demand
R1 2010Q1 Avg Price, Population, Income, · · · 20,000 (Predicted value), λk (Parameters) $340 22,000
R1 2010Q2 Avg Price, Population, Income, · · · 25,000, λk $350 24,000
R2 2010Q1 Avg Price, Population, Income, · · · 19,000 (Predicted value), λk (Parameters) $360 21,000
R2 2010Q2 Avg Price, Population, Income, · · · 18,000, λk $250 20,000

...
...

...
...

...
...

B. PREDICTION RESULTS OF OTHER REGRESSION TECHNIQUES
Tables XI and XII show the market share prediction performances of all tested regression algorithm-
s including MAP-EF(Ridge), MAP-EF(Lasso), MAP-EF(Lars), and MAP-EF(TheilSen). We refer to
Section 8.1 for a description of the experiment settings and the three metrics (CC, R2, MAE/Max)
for measuring prediction performance. As we can see in Table XI, our selected MAP-EF with
RANSAC and GPR (herein we call it MAP-EF for short) shows the best performance in the mean
values of all metrics. While the mean metrics values of some regression algorithms are quite close
to MAP-EF(e.g., MAP-EF(Lars)), it is shown in Table XII that their variances are much larger than
MAP-EF, which means others regression algorithms are not as stable as MAP-EF. This is the main
reason why we choose MAP-EF.

Table XIII shows the total demand prediction results for all the regression algorithms. As we
can see, the mean values of both CC and R2 of MAP-EF are larger than the other regression algo-
rithms, while the mean and variance values of MAE/True are much smaller. This also indicates the
superiority of MAP-EF while predicting total demand.
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Table XI: Mean values of CC,R2 and MAE/Max for market share predictions. ↑ indicates that larger
values are preferred and vice versa. The best method is highlighted in yellow.

All |A| ≥ 4

CC(↑) R2(↑) MAE CC(↑) R2(↑) MAE
/Max(↓) /Max(↓)

Market1 0.82 -0.84 0.133 0.82 0.18 0.157
Market2 0.48 -3.51 0.188 0.62 -1.92 0.212
Market3 0.34 -6.96 0.27 0.44 -3.99 0.32

MAP-EF(Ridge) 0.92 0.65 0.07 0.91 0.64 0.07
MAP-EF(Lasso) 0.93 0.71 0.06 0.93 0.69 0.06
MAP-EF(Lars) 0.94 0.71 0.06 0.91 0.70 0.06

MAP-EF(TheilSen) 0.82 0.13 0.07 0.81 0.70 0.07
MAP-EF 0.96 0.88 0.052 0.95 0.89 0.046

Table XII: Variance of CC, R2 and MAE/Max of Market Share Predictions.

All |A| ≥ 4

CC(↓) R2(↓) MAE CC(↓) R2(↓) MAE
/Max(↓) /Max(↓)

Market1 0.18 132.2 0.06 0.09 4.29 0.08
Market2 0.54 109.7 0.08 0.31 26.77 0.09
Market3 0.55 964.9 0.10 0.35 38.66 0.10

MAP-EF(Ridge) 0.06 2.66 0.02 0.05 3.07 0.03
MAP-EF(Lasso) 0.06 2.31 0.02 0.04 3.2 0.02
MAP-EF(Lars) 0.06 2.33 0.02 0.04 3.1 0.03

MAP-EF(TheilSen) 0.23 18.54 0.02 0.21 0.13 0.02
MAP-EF 0.03 0.12 0.01 0.01 0.05 0.01

Table XIII: CC, R2 and MAE divided by true demand of Total Demand Predictions. Note that the
variance of CC and R2 cannot be defined because it predicts a scalar value for each route.

CC(↑) R2(↑) MAE/True MAE/True
(Mean,↓) (Variance,↓)

Demand1 0.77 0.31 0.29 0.06
Demand2 0.49 -1.4 0.57 0.1
Demand3 0.56 -0.8 0.49 0.08

MAP-EF(Ridge) 0.34 -4.68 0.22 0.07
MAP-EF(Lasso) 0.94 0.92 0.12 0.02
MAP-EF(Lars) 0.95 0.93 0.12 0.02

MAP-EF(TheilSen) 0.95 0.88 0.14 0.01
MAP-EF 0.98 0.96 0.07 0.004

C. DYNAMIC PROGRAMMING APPROACH
The following recurrence formula shows the suggested dynamic programming approach:

N∗(i, w) =
fmax
i

max
k=0
{N∗(i− 1, w − k · Ci) +Ni(k)},

where N∗(i, w) is the best profit we can get when operating flights from R1 to Ri and the budget is
w. Ni(k) is the profit of operating k flights on Ri. Hence, N∗(n, b) will output the optimal strategy
of the profit maximization.
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Example C.1. Assume there are three routes, R1, R2, and R3; and C1 = C2 = C3 = 10 and
b = 100. The optimal profit is N∗(3, 100) = max{N∗(2, 100), N∗(2, 90) +N(3, 1), N∗(2, 80) +
N(3, 2), · · · }.

D. SCATTER PLOTS
Figure 12 shows full details of market share predictions, especially when |A| ≥ 4 (the most chal-
lenging prediction case). Market share prediction of a route is evaluated with three metrics: CC,R2,
and MAE/Max. For each pair of possible combination of these metrics, we show how well each pre-
diction model predicts in the figure. As is shown, MAP-EF’s dots are always collected at the “good”
corner of the chart. To illustrate, we take Figure 12(a) as an example, which shows the prediction
performance of metricsR2 vs. CC. As we know, largerR2 and CC values indicate better prediction.
In this figure, MAP-EF’s dots always stay at the top right corner of the chart, which means it always
has large R2 and CC values. For the dots of existing prediction methods, while the dots of some
routes stay at the top right corner, the rest of them do not. Worse still, some dots are far away from
the corner. As is pointed out, even a small prediction gap can lead to a large profit loss in reality.
These results indicate that market share prediction should be performed by MAP-EF.

(a) MAE/Max vs. CC (b) R2 vs. CC

(c) MAE/Max vs. R2

Fig. 12: Scatter plot of market share predictions when |A| ≥ 4. Each dot corresponds to a prediction
of route.
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