Bo An, Nanyang Technological University Haipeng Chen, Nanyang Technological University Noseong Park, University of North Carolina, Charlotte V.S. Subrahmanian, University of Maryland

Though there are numerous traditional models to predict market share and demand along airline routes, the prediction of existing models is not precise enough and, to the best of our knowledge, there is no use of data-mining based forecasting techniques to improve airline profitability. We propose the MAP (Maximizing Airline Profits) architecture designed to help airlines and make two key contributions in airline market share and route demand prediction and prediction-based airline profit optimization. Compared with past methods to forecast market share and demand along airline routes, we introduce a novel Ensemble Forecasting (MAP-EF) approach considering two new classes of features: (i) features derived from clusters of similar routes, and (ii) features based on equilibrium pricing. We show that MAP-EF achieves much better Pearson Correlation Coefficients (over 0.95 vs. 0.82 for market share, 0.98 vs. 0.77 for demand) and  $R^2$ -values compared with three state-of-the-art works for forecasting market share and demand, while showing much lower variance. Using the results of MAP-EF, we develop MAP-Bilevel Branch and Bound (MAP-BBB) and MAP-Greedy (MAP-G) algorithms to optimally allocate flight frequencies over multiple routes, to maximize an airline's profit. We also study two extensions of the profit maximization problem considering frequency constraints and long term profits. Furthermore, we develop algorithms for computing Nash equilibrium frequencies when there are multiple strategic airlines. Experimental results show that airlines can increase profits by a significant margin. All experiments were conducted with data aggregated from four sources: US Bureau of Transportation Statistics (BTS), US Bureau of Economic Analysis (BEA), the National Transportation Safety Board (NTSB), and the US Census Bureau (CB).

 $\label{eq:ccs} CCS \ Concepts: \bullet Information \ systems \rightarrow Data \ mining; \bullet Computing \ methodologies \rightarrow \ Ensemble \ methods; \ Optimization \ algorithms; \ Search \ methodologies;$ 

Additional Key Words and Phrases: Ensemble Prediction, Regression, Airline Demand and Market Share Prediction, Airline Profit Maximization

### 1. INTRODUCTION

Since the deregulation of US airlines in 1978, there has been intense competition amongst airlines for market share and, eventually, profitability. While there is considerable work on predicting market share and demand along airline routes, the prediction of existing models is not precise enough and, to the best of our knowledge, there is no use of data-mining based forecasting techniques to improve airline profitability. In this paper, we formally define the MAP problem by allowing airlines to decide the flight frequencies on their flying routes in order to maximize their profits, subject to cost constraints. For instance, if there is a set  $\mathcal{R}$  of routes in the world, and the airline can fly up to n

© YYYY ACM. 2157-6904/YYYY/01-ARTA \$15.00

DOI: http://dx.doi.org/10.1145/0000000.0000000

This research is supported by the National Research Foundation, Prime Minister's Office, Singapore under its IDM Futures Funding Initiative.

This paper is an extended version of [An et al. 2016].

Author's addresses: B. An, School of Computer Science and Engineering, Nanyang Technological University, email: boancqu@gmail.com; H.P. Chen, Joint NTU-UBC Research Centre of Excellence in Active Living for the Elderly (LILY), Nanyang Technological University, email: chen0939@e.ntu.edu.sg; N. Park, University of North Carolina at Charlotte, email: npark2@uncc.edu; V.S. Subrahmanian, UMIACS & Department of Computer Science, University of Maryland, email: vs@umiacs.umd.edu

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.

routes where  $n \leq |\mathcal{R}|$ , then our MAP problem would capture both route selection (which routes to fly) and frequency<sup>1</sup>.

The first key contribution of this paper is a precise route-specific prediction of both total demand of an origin-destination market and an airline's market share. Existing related works only use simple regression methods and focus on a limited number of variables. Our studies of three major route market share [Hansen 1990; Suzuki 2000; Wei and Hansen 2005] and demand prediction [Alperovich and Machnes 1994; Bhadra and Kee 2008; Bhadra and Wells 2005] methods show that the Pearson Correlation Coefficients between the predicted values and the actual values are a max of 0.82 (for one market share method) and 0.77 (for one demand model). Other existing models predict much lower numbers. Although one of these regression methods [Hansen 1990] outputs satisfactory prediction results in our experiments, there is still a gap between the prediction and the real value. The relatively "small" prediction gap can lead to a huge revenue loss if airlines make decisions based on the prediction. Worse still, due to the inflexibility of existing models, the prediction gap can be large for some routes. We propose a new ensemble-based prediction method for forecasting total demand and market share, which uses an extensive number of features and several state-of-the-art clustering and regression algorithms that have never been adopted for MAP. The new ensemble method builds upon existing models, but also collects several new features, together with novel clustering and game theoretic methods. We are the first to propose a prediction method, for a broad set of routes (around 700 - past works stopped at 200), which considers the predictions of both total demand (demand generation) of a route and market share (demand allocation) of each airline operating in that route (13 airlines in total).

The second key contribution is two novel algorithms for solving MAP, which becomes computationally intractable with brute-force search when the number of routes is large. This is because: 1) the solution space is exponential w.r.t. the number of routes, 2) the profit-frequency function, which is generated by our proposed prediction method, is neither convex nor concave (and thus not linear). We show in Section 2 that MAP belongs to the hardest subclass of *Knapsack Problems* (KPs) and *Resource Allocation Problems* (RAPs), and despite a vast amount of existing works [Bretthauer and Shetty 2002; Caprara et al. 2000; Pferschy 1999; Pisinger 2000] for both KPs and RAPs, all previous algorithms fail to solve it efficiently. Based on predictions made by MAP-EF, we come up with two optimization algorithms to solve the raised profit maximization problem. We present an exact algorithm to solve MAP based on a novel Bilevel-Branch and Bound approach (MAP-BBB) that computes the true optimal solution, as well as a Greedy algorithm (MAP-G) that more quickly computes suboptimal solutions.

Third, we study two practical extensions of the basic frequency-based airline profit maximization problem and develop algorithms to compute Nash equilibrium strategies when there are multiple strategic airlines. 1) Airlines are usually conservative about changing their flight frequencies. Furthermore, they are concerned about the effect of the current frequency strategies on future "potential" profits. As a result, we introduce bounded frequencies and a future profit effect factor in the basic profit maximization problem as two extensions of the basic problem and study their effects on airlines' profits. 2) We consider multiple strategic airlines. In the basic profit maximization problem, we assume only one airline is strategic in deciding its frequencies. We release this assumption and study Nash equilibrium frequency strategies with multiple strategic airlines, each of which is smart enough to reason about the optimal behavior of the other airlines.

Last, we conduct extensive experimental evaluations to compare MAP's prediction results with those of past works. We show that past prediction models are significantly "beaten" by MAP, which increases these predictive accuracies to over 0.95, while significantly reducing the variance in our prediction error compared with past works. We also compare both the optimality and scalability of our proposed profit maximization algorithms with several benchmarks. The result shows that our

<sup>&</sup>lt;sup>1</sup>Because the airline industry is very complex, it is difficult to model all other sources of profit that might be available (e.g., in-flight sales, baggage fees, etc.) to the airline, especially as such data is not freely available.

predictions are far superior to past efforts. Moreover, by using MAP, an airline can increase its profit by at least 55% under mild conditions.<sup>2</sup>

The rest of this paper is organized as follows. Section 2 introduces related work. Section 3 discusses the data set used in our study. Section 4 shows our proposed prediction framework based on our ensemble method. Section 5 presents our proposed algorithms for the basic profit maximization problem. Section 6 introduces two practical extensions of the profit maximization problem. Section 7 studies equilibrium frequency strategies with multiple strategic airlines. Section 8 conducts extensive experimental evaluations. *For notational convenience, Table I summarizes all the notations used in this paper*.

| $\mathcal{A}$ | a set of airlines                                                 | $N_i(f_i)$               | profit when A operates $f_i$ flights on route $R_i$                         |
|---------------|-------------------------------------------------------------------|--------------------------|-----------------------------------------------------------------------------|
|               | $i^{th}$ airline of $A$                                           |                          |                                                                             |
| $A_i$         |                                                                   | $\langle f_i \rangle$    | frequency strategy for all routes in $\mathcal{R}$ of airline A             |
| $\mathcal{R}$ | a set of routes                                                   | $\langle f_i^* \rangle$  | optimal frequency strategy of airline A                                     |
| $R_i$         | $i^{th}$ route of $\mathcal R$                                    | $N(\langle f_i \rangle)$ | profit of frequency strategy $\langle f_i \rangle$                          |
| Sy            | mbols related to predict market share of route $R$                | b                        | budget limit of the Profit Maximization problem                             |
| $X_{ik}$      | the value of the $k^{th}$ variable, e.g., price, of airline $A_i$ | K                        | the number of routes to optimize profit of airline                          |
| $\eta_k$      | the weight of $X_{ik}$                                            | Syn                      | nbols related to MAP-BBB in Algorithm 2                                     |
| $V_i$         | airline $A_i$ 's customer utility in $R$                          | $n_p$                    | parent node                                                                 |
| $m_i$         | market share of airline $A_i$ in $R$                              | с                        | child node                                                                  |
|               | Symbols related to predict demand of route $R$                    |                          | left and right children of a parent node                                    |
| $Y_k$         | the value of the $k^{th}$ variable, e.g., population              | $N^*$                    | optimal profit sought by the algorithm                                      |
| $\lambda_k$   | the exponent of $Y_k$                                             | MaxLB                    | bounding threshold                                                          |
| d             | total demand (the number of passengers) of route $R$              | $UB_c, LB_c$             | lower bound and upper bound profit of node $c$                              |
| Symb          | ols related to calculate Nash Equilibrium of route $R$            | $C_c$                    | lower bound cost of node c                                                  |
| $p_i$         | average ticket price of $A_i$ for route $R$                       | Sy                       | mbols related to MAP-G in Algorithm 3                                       |
| $c_i^{psg}$   | unit passenger related cost of $A_i$ in route $R$                 | g                        | a group of route                                                            |
| $N(A_i)$      | utility (profit) of $A_i$ in route $R$                            | q                        | the number of routes in a group $g$                                         |
| Sy            | Symbols related to Profit Maximization of airline A               |                          | a set of route groups, $\mathcal{R}$ is divided into $ \mathcal{G} $ groups |
| $C_i$         | per flight cost of route $R_i$ for a given airline A              | δ                        | budget allocation unit                                                      |
| $f_i$         | flight frequency of route $R_i$ for a given airline A             | $\langle f_a^* \rangle$  | optimal frequency strategy of group $g$                                     |
| $r_i(f_i)$    | revenue when A operates $f_i$ flights on route $R_i$              |                          |                                                                             |

#### Table I: Summary of Notations

### 2. RELATED WORK

Existing airline market share and demand prediction models try to write down math formulas for market share/demand and then use regression to find values of the parameters in these formulas that minimize the sum of the squared errors between the predicted values and the true values. We therefore call these **math models** to indicate that the structural form of these models is written down a priori without reference to any data and that the parameter values that minimize error are then computed using available data.

Airline market share prediction. Most works on airline market share prediction use a multinomial logit (MNL) regression model [Hansen 1990; Suzuki 2000; Wei and Hansen 2005]. For a set A of airlines in a given route, an airline  $A_i$ 's market share  $m_i$  is modeled as:

$$m_i = \frac{e^{V_i}}{\sum_{A_i \in \mathcal{A}} e^{V_j}}.$$
(1)

Here  $V_i = \sum_k \eta_k X_{ik}$  is the customer's utility for choosing airline  $A_i$ 's service,  $X_{ik}$  is the value of the  $k^{th}$  variable for airline  $A_i$  and  $\eta_k$  is its corresponding weight to be learnt from data. Various variables have been studied. In Market1 [Hansen 1990], the authors consider a route's price, frequency,

 $<sup>^{2}</sup>$ Like all past models, our analysis of airline profits is only based on publicly available data, so the true number might be smaller. Nevertheless, even a 10% improvement in the real-world would be substantial.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

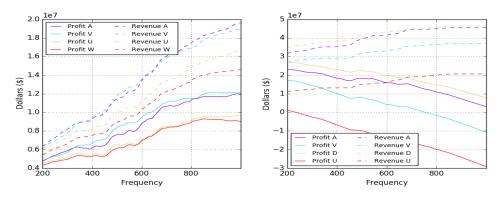


Fig. 1: Quarterly revenue (dashed lines) and profit (solid lines) in 10 million dollars generated by MAP-EF. Revenue is defined as average ticket price multiplied by the number of passengers. Cost is per flight cost multiplied by frequency. Note that the profit-frequency curve (revenue minus cost) is very irregular even though the revenue-frequency curve is monotonically increasing. The shapes of the curves are quite different.

and the number of stops. Based on the prediction, they analyze competition among airlines. Market2 [Suzuki 2000] considers an airline's frequency, delay, and safety. Market3 [Wei and Hansen 2005] studies the effect of aircraft size and seat availability on market share and considers other variables such as price and frequency.

**Total demand prediction.** For total demand of a route, a multiplicative [Alperovich and Machnes 1994; Bhadra and Kee 2008; Bhadra and Wells 2005] regression model is the most frequently adopted. Formally, a route's total demand is represented as:

$$d = \prod_{k} Y_k^{\lambda_k},\tag{2}$$

where  $Y_k$  is a value of the  $k^{th}$  variable and  $\lambda_k$  is a parameter to be learnt from data which measures the importance of  $Y_k$ . Demand1 [Alperovich and Machnes 1994] considers wealth related variables such as price, income and CPI (consumer price index). Demand2 [Bhadra and Wells 2005] studies the influence of demographic variables such as price, income and population, as well as hub status (i.e., large, medium, small or non-hub) on passenger demand. Demand3 [Bhadra and Kee 2008] focuses on variables such as price, income, population and origin-destination distance.

In this paper, our prediction models build on all of these methods, but use an ensemble approach to achieve not only much higher predictive accuracy, but also much greater robustness.

**KPs and RAPs.** Airline profit maximization through optimal frequency allocation over multiple routes, given a certain budget constraint, belongs to the family of KPs and RAPs, which have been extensively studied ever since the work of Dantzig [Dantzig 1957] in 1957. While all variants of KPs are known to be *NP-hard*, MAP, which has bounded integer variables, and a non-concave (arbitrary) objective function, is notoriously hard [Bretthauer and Shetty 2002].

There are some Polynomial Time Approximate Schemes (PTAS) and even Fully-PTAS to solve bounded knapsack problems (BKPs), using greedy algorithms [Keller et al. 2004], dynamic programming [Pisinger 2000] and branch and bound [Martello and Toth 1977]. The first two methods assume linear objective functions, while the last approach uses linear relaxation. Several algorithms have been proposed to solve KPs/RAPs with non-linear objective functions, especially for a concave and non-decreasing objective function [Bretthauer and Shetty 2002]. The common idea is to decompose the original objective function into a set of approximated piecewise linear functions. Unfortunately, none of these works for our problem. This is because the profit-frequency function in our problem is neither concave nor convex (thus not linear), varies from one route to another,

and cannot be described by a simple math formula but by a series of clustering, regression, and other types of functions<sup>3</sup>. As shown in Figure 1 where the x-axis is the frequency and the y-axis is the profit (or revenue), the two graphs are for two routes (SFO-LAX route on the left and JFK-LAX route on the right) and 4 major US airlines. We see that the shapes of the curve on the left (SFO-LAX) is quite different from another on the right (JFK-LAX). In fact, across the 700 routes we studied, there was huge variation in the actual profit/revenue curves. Thus, any method specially devised for a certain form of objective functions (e.g., linear, concave or convex) cannot be applied.

**Optimal decision making based on data-mining.** Data-mining based optimization has been implemented by many existing KDD papers, including optimal bidding [Zhang et al. 2014; Zhu et al. 2015], smart pacing [Xu et al. 2015] and optimal recommendation systems [Lu et al. 2014]. In the first step of these works, a predicted objective function is learned using regression analysis techniques. Based on the prediction results, an optimization problem is solved, either analytically [Lu et al. 2014; Zhang et al. 2014] or via optimization algorithms [Xu et al. 2015; Zhu et al. 2015]. While our MAP framework follows this general scheme, it differs in many ways, including the fact that the predicted objective function is in a very complicated linear algebra form.

## 3. THE MAP DATASET

We have created an integrated "MAP" data set by aggregating information from 4 publicly available data sources, viz. the Bureau of Transportation Statistics (BTS) [BTS 2016], the Bureau of Economic Analysis (BEA) [BEA 2016], the National Transportation Safety Board (NTSB) [NTS-B 2016], and the U.S. Census Bureau (Census) [Census 2016]. The entire dataset amounts to 539 million rows, 80% of which are from the BTS dataset. BTS provides almost all aspects of airline market information such as ticket price<sup>4</sup>, frequency, number of stops, delay records, aircraft size and available seats. The BEA and the Census release regional income, economic state, and population information while the NTSB provides all safety and accident related information. The BTS provides a quarterly dataset. A detailed description of the variables we consider is presented in Table II. We plan to publicly release our tools and data set in 2016.

|  | Table II: | Variables | for | predictions | in re | elated works |
|--|-----------|-----------|-----|-------------|-------|--------------|
|--|-----------|-----------|-----|-------------|-------|--------------|

|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 | ALGORITHM 1: ITER                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
|-----------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| 81                                                              | 1                                                                                                                                                                                                                                                                                                                                                                                               | Randomly assign values to $\mathbf{p}_{t-1}$ within                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 | $[p_i^{min}, p_i^{max}]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
|                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| ratio of delayed flights to total number of flights by airline  | 2                                                                                                                                                                                                                                                                                                                                                                                               | repeat                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| ratio of canceled flights to total number of flights by airline | 3                                                                                                                                                                                                                                                                                                                                                                                               | for $A_i \in \mathcal{A}$ do                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| average number of stops of all flights by airline               | 4                                                                                                                                                                                                                                                                                                                                                                                               | $counter \leftarrow 0$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| number of casualties caused by past accidents of airline        | 5                                                                                                                                                                                                                                                                                                                                                                                               | $p_{i,t} \leftarrow $ Solution of Eqs.(3)-(5)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| average number of seats for a flight of airline                 | 6                                                                                                                                                                                                                                                                                                                                                                                               | $  \mathbf{if}   p_{i,t} - p_{i,t-1}   \le \varepsilon \text{ then} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| total number of seats provided by airline during a quarter      | U                                                                                                                                                                                                                                                                                                                                                                                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| Total Demand                                                    |                                                                                                                                                                                                                                                                                                                                                                                                 | $\mid counter + +$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| average of all airlines' ticket prices                          | 7                                                                                                                                                                                                                                                                                                                                                                                               | $  \mathbf{p}_{t-1} \leftarrow \mathbf{p}_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| geometric mean of origin and destinations' population           | 8                                                                                                                                                                                                                                                                                                                                                                                               | <b>until</b> $counter = n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| geometric mean of origin and destinations' income               | 9                                                                                                                                                                                                                                                                                                                                                                                               | return $\mathbf{p}_t$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| geometric mean of origin and destinations' CPI                  | 1                                                                                                                                                                                                                                                                                                                                                                                               | F t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| distance between origin and destination                         |                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
|                                                                 | average number of stops of all flights by airline<br>number of casualties caused by past accidents of airline<br>average number of seats for a flight of airline<br>total number of seats provided by airline during a quarter<br>Total Demand<br>average of all airlines' ticket prices<br>geometric mean of origin and destinations' income<br>geometric mean of origin and destinations' CPI | Market share       1         average price of tickets sold by airline       1         number of flights operated by airline       2         average delay time of all flights operated by airline       3         ratio of delayed flights to total number of flights by airline       3         average number of stops of all flights by airline       4         number of casualties caused by past accidents of airline       5         average number of seats for a flight of airline       6         total number of seats provided by airline during a quarter       7         geometric mean of origin and destinations' population       8         geometric mean of origin and destinations' CPI       9 |

### 4. ENSEMBLE PREDICTION MODEL

In this section, we design an ensemble-based predictor MAP-EF that produces highly accurate routespecific predictions.

**Overall architecture.** Figure 2 shows the architecture of our ensemble model with 4 major steps.

Step 1 - Past Models with Regularization. In the first step, we use the MAP-dataset, in conjunction with existing market share models (Market1 [Hansen 1990], Market2 [Suzuki 2000], Market3 [Wei

<sup>&</sup>lt;sup>3</sup>We will revisit this point after Definition 5.2.

 $<sup>^{4}</sup>$ BTS releases a 10% sample of route and airline specific ticket sales logs, from which average ticket price is obtained.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

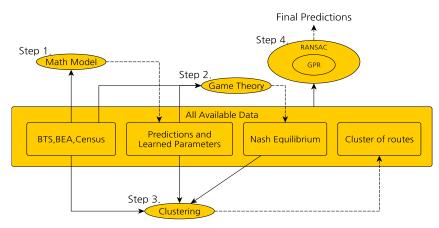


Fig. 2: Structure of the MAP-EF prediction model. Rectangles mean data and elipses algorithms. Each algorithm is marked with a processing sequence number. Solid lines mean inputs and dashed lines outputs.

and Hansen 2005]) and demand models (Demand1 [Alperovich and Machnes 1994], Demand2 [B-hadra and Wells 2005], Demand3 [Bhadra and Kee 2008]) in order to generate the predictions made by models developed previously in the literature. These predictions are used as additional features. In addition, we augment past models with regularization [Bishop 2006].<sup>5</sup> Because this step is s-traightforwardly built on top of past works, we do not go into it in further detail.

*Step 2 - Nash Equilibrium.* Ticket pricing clearly influences both market share and demand. Moreover, the competitive pricing behavior of airlines would have further influence. Thus, we include equilibrium pricing calculated based on past models as an additional feature in MAP-EF. After this step, each route has one feature table for market share prediction and another for demand prediction. Each table<sup>6</sup> includes a set of features collected from the MAP-dataset and from Steps 1 and 2.

*Step 3 - Clustering of Similar Routes.* We cluster all routes into groups of similar routes with the features of the quarter we predict. For each group of routes, we concatenate all the individual route tables constructed in Step 2 for all routes in that group. The merged tables are then used for training within MAP-EF. We describe this step in further detail.

Step 4 - Iterative Gaussian Process Regression (GPR) and Random Sample Consensus (RANSAC). After Step 3, we have a comprehensive MAP Feature Table. We use a combination of the well-known methods of GPR [Rasmussen and Williams 2006] and RANSAC [Fischler and Bolles 1981]. To make market share/demand predictions for a route R, this step trains only on data of the group that contains route R, removes outliers with RANSAC, and then uses GPR to make the final prediction.

**Nash equilibrium price feature.** In a competitive airline market, the pricing behaviors of airlines are strategic. To capture the competitive nature of the market, we include equilibrium price as an additional feature<sup>7</sup>. The rationale behind this is that when an airline's quoted price is higher/lower

<sup>&</sup>lt;sup>5</sup>In past works for market share prediction, the authors minimize sum-squared-error (SSE), i.e. they try to find parameter values for the math models that minimize  $\Sigma_{A_i} (m_i - \hat{m_i})^2$  where  $m_i$  (resp.  $\hat{m_i}$ ) is the true (resp. predicted) market share. In addition to this, regularization minimizes  $\sum_{A_i} (m_i - \hat{m_i})^2 + ||W||$ , where W is a vector that consists of parameters  $\eta_k$  (or  $\lambda_k$  for demand prediction) and ||W|| is the norm of W. ||W|| can be defined using either the  $L^1$  or  $L^2$  norm. Thus, we have three options: SSE, SSE+ $L^1$  regularization, and SSE+ $L^2$  regularization. In order to decide the best model among these, we use grid search and cross-validation. For cross-validation, we predict a quarter of the training data after training with the remaining quarters regardless of temporal sequence, which creates *n*-fold cross validation, where *n* is the number of quarters in the training data.

<sup>&</sup>lt;sup>6</sup>Please refer to the Appendix for detailed examples of the merged table.

<sup>&</sup>lt;sup>7</sup>Note that when computing the equilibrium price, the market share and total demand is the math formula obtained in Step 1, and the competition is only within a route.

than its equilibrium price, the customer might lose/gain utility, which has influence on the customer's choice and thus further affects an airline's market share. Therefore, we use the gap between equilibrium price and real price as an additional feature. The utility (net income)  $N(A_i)$  of an airline  $A_i$  w.r.t. a specific route is  $N(A_i) = (p_i - c_i^{psg}) \cdot d \cdot m_i$ , where  $p_i$  is the ticket price and  $c_i^{psg}$ is the passenger-related per ticket cost obtained from the BTS dataset. d and  $m_i$  are a route's total demand and airline  $A_i$ 's market share as described in Section 2. Recall that Nash equilibrium is an equilibrium situation in a multi-player non-cooperative game, where each player is assumed to know the equilibrium strategies of the other players, and no player has anything to gain by changing only its own strategy. Following this definition, we formulate the computation of Nash equilibrium strategy of each airline  $A_i \in A$  w.r.t. a given route:

$$\max_{p_i} \quad N(A_i), \tag{3}$$

subject to 
$$p_i^{min} \le p_i \le p_i^{max}$$
, (4)

$$d \cdot m_i \le Q_i. \tag{5}$$

Eq.(4) specifies the feasible section of price, and Eq.(5) indicates that the total number of passengers cannot exceed its capacity  $Q_i$ . To compute equilibrium price on a route, we propose ITER (Iterative meThod for nash EquilibRium computation) in Algorithm 1, where  $\mathbf{p}_{t-1}$  and  $\mathbf{p}_t$  denote the optimal price vectors of two subsequent "virtual" periods. The algorithm starts with an initialization of  $\mathbf{p}_{t-1}$ within  $[p_i^{min}, p_i^{max}]$ , where  $p_i^{min}$  and  $p_i^{max}$  are the minimum and maximum possible prices quoted by airline  $A_i$ . After this, iteration proceeds. In each repeat loop (Lines 2-8), the algorithm updates optimal prices of all the airlines. Within each repeat loop, there is a for loop (Lines 3-7). In the for loop, each airline alternately updates its optimal price  $p_{i,t}$  based on the previous price vector  $\mathbf{p}_{-i,t-1}$ of the other airlines in the last virtual period. It iterates until for each airline  $A_i \in A$ , the price is not updating in two subsequent virtual periods (i.e., the difference between the two prices is no larger than a small threshold  $|p_{i,t} - p_{i,t-1}| \le \varepsilon$ ), which means a Nash equilibrium is obtained. Note that the existence and uniqueness of Nash equilibrium prices are dependent on the utility function  $N(A_i)$  (e.g., whether it is concave w.r.t. price). Due to the complex form of the utility function, it is intractable to prove it analytically. However, the following theorem guarantees that if there exists an equilibrium price, ITER always returns it, and our empirical results show that ITER always returns a solution after a few iterations, which means that Nash equilibrium prices always exist.

## THEOREM 4.1. If ITER returns a solution, then that solution is the Nash equilibrium price.

PROOF. In each repeat loop, ITER finds the best response of all players (airlines) given the strategies of the last virtual period. When the best response strategies of all players in the current virtual period are equal to the best response strategies of the last virtual period, a Nash equilibrium is found according to the definition of Nash equilibrium.  $\Box$ 

**Clustering similar routes.** Some routes are more similar than others, e.g., LAX-JFK may show more similar market attributes to SFO-JFK than LAX-SFO because the first two are long-haul routes from west to east and the last one is a short-haul local route, and estimating market share/demand would probably benefit from examining all of similar routes. In order to cluster routes, we use all features gathered in the MAP-dataset, Steps 1 and 2. As we do not know the "ground truth" definition of whether a cluster is correct or not, we evaluate cluster quality via *silhouette score*<sup>8</sup> [Rousseeuw 1987]. The silhouette score tends to keep increasing (with some glitches) as the number of clusters increases. The elbow method [Thorndike 1953] chooses the optimal number of clusters when silhouette scores stabilize. We tested several clustering methods including K-Means<sup>++</sup>[Arthur and

<sup>&</sup>lt;sup>8</sup>The silhouette score is to calculate the consistency of clusters. As more similar routes are contained by a cluster, its silhouette score is higher. If **G** is a set of clusters, *dis* is some distance (dissimilarity) measure, and *e* is some data item, the silhouette score  $SS(e) = \frac{b(e) - a(e)}{\max\{a(e), b(e)\}}$  where a(e) is the average distance between *e* and the data items of the cluster it belongs to, and b(e) is the minimum average distance between *e* and the data items of clusters it does not belong to.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

Vassilvitskii 2007] and connectivity-based and density-based clustering algorithms such as DB-SCAN [Ester et al. 1996]. Of these, we achieved the best result with K-Means<sup>++</sup>.

RANSAC/GPR regression. Training with similar routes does not always contribute positively to predictive accuracy. In several cases, it incurs additional error. We tested many linear regression algorithms such as Ridge, Lasso, and Lars [Bishop 2006]. None of them produce stable performance across multiple routes. We then tested a specially devised structure that consists of RANSAC and GPR. RANSAC removes outliers from training data and GPR makes the final prediction only with inliers. GPR is known to be robust because it is much less parametric than other methods. GPR assumes that priors follow Gaussian processes, and the prior mean values are set to the same as the training data means. The prior's covariance is calculated based on a user-input covariance function, i.e., kernel function, and the hyperparameters of the kernel function are optimized by maximizing the log-marginal-likelihood. The final predictions for test cases are calculated using the covariance matrix of all training and testing cases. The entire process can be described by a very complicated linear algebra form. RANSAC Regression is known to be robust w.r.t. noise. In the first step, RANSAC performs regression with a small random subset of training data called hypothetical inliers. In the second step, all training data that do not fit the model constructed in the first step (in terms of a user-specified loss function) are classified as outliers and others as inliers. These two processes iterate over time to refine the set of inliers called the *consensus set* until the size of consensus set is large enough. Thus, MAP-EF uses RANSAC with GPR as a base estimator. We show prediction results of other regression techniques in the Appendix.

**Time Overheads.** In comparison with past models, MAP-EF should spend additional time for clustering and more advanced regression methods, which takes cubic time of training data size.

## 5. AIRLINE PROFIT MAXIMIZATION VIA FREQUENCY ALLOCATION

In this section, we suggest how to maximize an airline's profit by optimally allocating quarterly frequencies to routes.

Definition 5.1 (Frequency Strategy). A frequency strategy of an airline A for a given set  $\mathcal{R} = \{R_1, \ldots, R_n\}$  of routes is a vector  $\langle f_i \rangle$  of non-negative integers.

Intuitively, the *i*'th element  $f_i$  of the frequency strategy denotes the number of times the airline should fly route  $R_i$  in a quarter. For a given airline A, a set  $\mathcal{R} = \{R_1, \ldots, R_n\}$ , per flight cost  $C_i$  for each route  $R_i$ , and total operation budget b, the profit maximization problem finds the frequency allocation  $\langle f_i \rangle$  of A assuming its competitors' behaviors are fixed. We also conduct experiments to test the robustness of this approach when competitors change their strategies simultaneously.

*Definition* 5.2. The **Frequency-based Profit Maximization Problem** can be encoded as the optimization problem:

$$\max_{\langle f_i \rangle} \quad \sum_{R_i \in \mathcal{R}} N_i(f_i) \tag{6}$$

subject to  $0 \le f_i \le f_i^{max}, f_i \in \mathbb{N}, \forall R_i \in \mathcal{R}$  (7)

$$\sum_{R_i \in \mathcal{R}} C_i f_i \le b. \tag{8}$$

 $N_i(f_i)$  is the profit of route  $R_i$  given frequency  $f_i$ , which is ticket revenue  $r_i(f_i)$  minus total operation cost  $C_i f_i$  and can be calculated by the market share and total demand predicted by MAP-EF. The ticket revenue is defined as price per ticket multiplied by airline A's total passenger demand on route  $R_i$ .  $\sum_{R_i \in \mathcal{R}} N_i(f_i)$  is the sum of profits for all routes. Because routes (such as the SFO-LAX and JFK-LAX routes shown in Figure 1) can differ dramatically in profitability, and as these numbers are basically estimated by our market share and demand prediction algorithms, it follows that the individual terms  $N_i(f_i)$  in our objective function can vary dramatically in form from one route to another. This is what makes using a single form of objective function difficult. Constraint (7) specifies the bound of frequency for each route as  $f_i^{max}$  and that the frequencies are non-negative

integers. The frequency bound  $f_i^{max} = \min(\lfloor \frac{b}{C_i} \rfloor, f^{BTS})$ , where  $f^{BTS}$  is the maximum frequency discovered in the BTS dataset, so that  $f_i$  does not exceed the feasible frequency bound. Constraint (8) indicates the budget constraint. As discussed in Section 2, this optimization problem belongs to the hardest class of KPs and RAPs, mainly due to two reasons: i) the solution space is exponentially large as  $\prod_i f_i^{max}$ , and ii) the objective function is neither convex nor concave (thus not linear).

Before presenting the complexity analysis and the algorithms to solve MAP, we introduce two important assumptions.

- Independence of Routes: we assume that varying the frequency of a route does not affect other routes' total demand and market share. This assumption is valid for most cases where the passenger's traveling pattern on one route is independent of the other routes.
- Monotonicity of Revenue and Cost: we assume revenue (resp. cost) is a monotonically increasing non-linear (resp. linear) function of frequency. As shown in Figure 1, this assumption is intuitive. Increasing frequency leads to larger market share (thus higher revenue) and higher operation cost. Therefore, the monotonicity of revenue and cost does not imply the monotonicity of profit. This prevents us from applying many well-developed algorithms for KPs and RAPs.

We show the computational hardness of the MAP problem with the following theorem.

THEOREM 5.3. The decision version of MAP (D-MAP) which answers the question "Is there a frequency strategy whose profit exceeds a threshold P without violating budget b?" is NP-complete.

PROOF. We first show that there is a polynomial reduction from the Knapsack problem to D-MAP. In the Knapsack problem, there are n items (each has  $p_i$  profit and  $w_i$  cost), budget limit W, a threshold V, and the objective is to find a set of items whose profit is no smaller than V without violating budget W. This a special instance of D-MAP where b = W, P = V,  $C_i = w_i$  and the profit-frequency function of route  $R_i$  is linear with the slope of  $p_i$ ; and the reduction from the Knapsack problem to profit maximization can be done in polynomial time.

Next, we show its correctness, i.e., Y is a yes instance of the Knapsack problem  $\iff X$  reduced from Y is a yes instance for D-MAP.

**"if" direction.** Assume that there exists a solution s for a Knapsack problem instance. We can create a frequency strategy  $\langle f_i \rangle$ , where  $f_i$  is the number of  $i^{th}$  item in the solution s. s can achieve a profit of at least V without violating budget W, and so is  $\langle f_i \rangle$  because b = W, P = V,  $C_i = w_i$  and the same linear profit function.

**"only if" direction.** Assume that a frequency strategy  $\langle f_i \rangle$  achieves a profit of at least P without violating budget b. We can create a Knapsack solution s to select  $f_i$  items for  $i^{th}$  item. s is a valid solution of the Knapsack problem because  $b = W, P = V, C_i = w_i$  and the same linear profit function.

Finally, D-MAP is in  $\mathcal{NP}$  because the verification process to check whether a frequency strategy's profit exceeds a threshold requires  $|\mathcal{R}|$  oracle queries. Note that each oracle query takes a constant time for a given route and airline. Thus, the verification process takes polynomial time.  $\Box$ 

Due to the computational complexity, it is intractable to find an optimal solution of the MAP problem by performing brute-force search. As a result, we propose two new approaches: i) MAP-BBB is a bi-level branch and bound method, and ii) MAP-G is a greedy algorithm operating over groups of routes. Section 8 shows that these two algorithms have complementary performance in terms of runtime (scalability) and optimality.

### 5.1. Bilevel Branch and Bound (MAP-BBB)

Branch and bound (BB) is a popular search algorithm for combinatorial optimization to efficiently enumerate the entire solution space and find the optimal solution. The solution space of BB can be represented by a rooted tree and each child of a parent node considers a subset of solution space of its parent node. BB consists of a series of repeated branching and bounding processes. In the branching process, the feasible solution space is divided into a number of smaller subsets, while in the bounding process, an upper and a lower bound of the objective (airline profit in this problem) is

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

derived for each subset of solution space. The largest lower bound is updated and, when the upper bound of a certain subset is smaller than the current largest lower bound, that subset is pruned since it does not contain the optimal solution. As we can see, the key of BB lies in finding a tight upper and lower bound for the bounding process, especially for upper bound. While most of the BB algorithms for Knapsack problems find upper bounds through linear relaxation [Martello and Toth 1977], the complicated form of our prediction model prevents us from implementing such upper bounds. As a result, we propose a novel *Bilevel branch and bound* (MAP-BBB) algorithm, which uses another sub-BB search to find an upper bound for the main BB process.

Algorithm 2 shows the MAP-BBB algorithm that builds on classical branch and bound methods. The search for an optimal solution explores a tree whose nodes are labeled with n intervals, one for each of the routes  $R_1, \ldots, R_n$  under consideration. Intuitively, if a node is labeled with the interval  $[\ell, u]$  for a particular route  $R_i$ , it means that we are currently restricting the frequency in the interval  $[\ell, u]$  for that route. MAP-BBB also maintains a priority queue Q of all the nodes where the head has the largest *upper bound* profit. The root node has the full range of  $[0, f_i^{max}]$  for each route  $R_i \in \mathcal{R}$ . As we descend the tree, these intervals get smaller. In Figure 3, for example, the parent node  $n_p$  is divided into two children nodes  $c_l$  and  $c_r$ , where the frequency range of the last route of  $n_p$  is divided into two halves.

ALGORITHM 2: MAP-Bilevel Branch and Bound (MAP-BBB)

1  $N^* \leftarrow 0, \langle f_i^* \rangle \leftarrow 0$ ; Create root; MaxLB  $\leftarrow LB_{root}$ ; 2 PriorityQueue  $Q \leftarrow \emptyset$ ; Q.enque(root)**3 while** |Q| > 0 **do** 4  $n_p \leftarrow Q.poll()$ if  $n_p$  is divisible then 5 Create  $c_l, c_r$ 6 for  $c \in \{c_l, c_r\}$  do 7 if  $LB_c > MaxLB$  and  $C_c \leq b$  then  $MaxLB \leftarrow LB_c$ 8 if  $UB_c \geq MaxLB$  and  $C_c \leq b$  then Q.enque(c)9 else if  $N^* < N(n_p)$  and  $C_{n_p} \leq b$  then 10  $| N^* \leftarrow N(n_p); \langle f_i^* \rangle \leftarrow \text{frequency strategy of } n_p$ 11 12 return  $\langle f_i^* \rangle$ ,  $N^*$ 

For the bounding process of child node  $c \in \{c_l, c_r\}$ , upper and lower bound profits of the optimal strategy that can be defined with the frequency range of c are calculated (to be further described below). If its lower bound  $LB_c$  is larger than the temporary maximum lower bound, denoted as MaxLB in Algorithm 2, and its lower bound cost  $C_c$  of the optimal strategy does not violate the budget b, then we update MaxLB (line 8). If its upper bound  $UB_c$  is no larger than MaxLB or its lower bound cost  $C_c$  violates budget b, we prune this node (line 9). Once we find a node that consists of only non-divisible ranges, i.e., min and max of ranges are all the same, and its cost is within budget b, it is a candidate of the optimal frequency strategy. The optimal strategy is selected among them (line 10).  $N^*$  and  $\langle f_i^* \rangle$  stand for the obtained optimal profit and optimal frequency strategy, respectively.

**Lower bound profit and lower bound cost.** Calculating a lower bound of profit  $LB_c$  and cost  $C_c$  of node c is a key to the MAP-BBB algorithm. We choose the min frequency value for each route's range and calculate its lower bound profit and cost with MAP-EF. This is valid because the optimal profit and the associated cost of node c are always no smaller than that.

**Upper bound.** As we cannot employ linear relaxation, upper bound calculation is more challenging. For this, we use another branch and bound process, which is why the proposed algorithm is called a *bilevel branch and bound*. For each range of  $R_i$  in node c, we perform the following sub branch and bound process to find its optimal frequency within the range **without a budget constraint**. This is good because the optimal profit without budget limit is definitely no smaller than the optimal profit

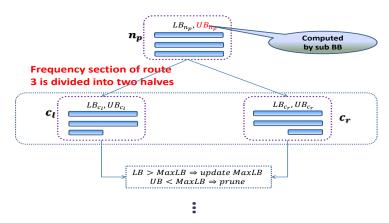


Fig. 3: An example branch and bound process for MAP-BBB with three routes. Each blue bar of node represents a frequency range. Lower BB is used to calculate an upper bound profit of a node.  $c_l$  and  $c_r$  are two children of the parent node  $n_p$ .

with budget constraint and it is much faster than the upper bound with budget check across multiple routes. We omit its pseudo code because it is more or less the same as Algorithm 2 except that the sub branch and bound does not check budget violation. In order to distinguish two branch and bounds, we use different terms sub and main. The sub root node is initialized with the specified range of  $R_i$ . During the sub branching process, we equally divide a sub node interval into two halves and create two sub children nodes. In the sub bounding process of a sub node, the heuristic for computing a lower bound of the sub branch and bound is defined as  $r_i(f_{random}) - C_i f_{random}$ , where  $f_{random}$ is a random frequency in the frequency range. This holds since any feasible frequency generates a lower bound of the optimal profit. The heuristic for computing an upper bound of the sub branch and bound is  $r_i(f_{max}) - C_i f_{min}$ , where  $f_{max}$  and  $f_{min}$  are the maximum and minimum frequency of the sub node, which utilizes the monotonicity of revenue and cost. The sum of maximum profits calculated for each route with the sub branch-and-bound without budget constraint is always no smaller than that with a budget, thus sub branch-and-bound provides an upper bound profit of the main node. With the lower and upper bounds derived above, MAP-BBB eliminates only non-optimal frequency strategies of routes, which proves correctness and optimality of MAP-BBB. We show the best-case complexity analysis of MAP-BBB:

THEOREM 5.4. The best-case runtime complexity of MAP-BBB is  $O((\log(\max\{f_i^{max}\}))^2 \times n)$ , where n is the number of routes.

PROOF. The best-case complexity of the bi-level branch and bound algorithm happens when in each branch and bound process, one of the children nodes is pruned. For each route  $R_i$ , its maximum frequency is  $f_i^{max}$  and it takes  $\log(f_i^{max})$  branches until the frequency in this route is nondivisible; for all routes, it takes  $\max\{f_i^{max}\} \times n$  time. While for each branch it needs at least  $O(\log(\max\{f_i^{max}\}))$  time to solve one sub branch and bound. Thus, the total complexity is  $O((\log(\max\{f_i^{max}\}))^2 \times n)$ .  $\Box$ 

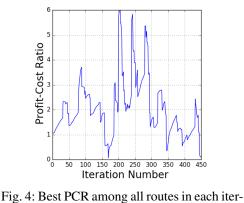
The worst-case complexity happens when there is no pruning in each branch and bound process. however, the experimental results in Section 8 show that this never happens and the average runtime of MAP-BBB is promising.

## 5.2. Greedy Algorithm (MAP-G)

As MAP is NP-hard, it is clear that the exact algorithm MAP-BBB may not be scalable. In this section, we propose a greedy algorithm to solve MAP more efficiently while sacrificing optimality. A naive greedy algorithm is to increase the frequency of the route with the largest marginal profit/cost

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

ratio (PCR) which is known to work very well for conventional knapsack problems. However, unlike conventional knapsack problems where PCR is fixed (i.e., linear objective function), the PCR in our problem fluctuates as can be seen from the example in Figure 4. According to our experiments, this naive greedy approach on average achieves only 0.66 of the optimal profit.



ation of the naive greedy Knapsack algorithm.

ALGORITHM 3: MAP-G

1  $N^* \leftarrow 0, \langle f_i^* \rangle \leftarrow \mathbf{0}$  $\mathcal{G} \leftarrow \text{divide } \mathcal{R} \text{ into } \left| \frac{n}{h} \right| \text{ groups}$  $\mathbf{s} \ b_q \leftarrow \delta, \ \forall g \in \mathcal{G};$ 4 while  $\sum_{g \in G} b_g \leq b$  do for  $g \in \mathcal{G}$  do  $\langle f_q^* \rangle \leftarrow$  solve MAP of g with budget  $b_g$ 6  $g^* \leftarrow$  the best PCR group 7  $\langle f_i \rangle \leftarrow merge(\{\langle f_q^* \rangle | g \in \mathcal{G}\})$ 8  $b_{q^*} \leftarrow b_{q^*} + \delta;$ 9 if  $N^* < N(\langle f_i \rangle)$  then  $\langle f_i^* \rangle \leftarrow \langle f_i \rangle$ 10 11 return  $\langle f_i^* \rangle, N^*$ 

To address the fluctuating PCRs, we suggest an improved "Group-Greedy" algorithm (MAP-G). The basic idea of MAP-G is that, instead of greedily raising the frequency of a single route with the largest PCR, MAP-G first divides routes into groups, and then compares the PCRs of different groups and raises frequencies of the group of routes with the largest PCR. As shown in Algorithm 3, it randomly divides n routes into  $\lfloor \frac{n}{q} \rfloor$  groups (line 2), each consisting of q routes<sup>9</sup>. Initially, each group is assigned small budget  $\delta$  (line 3) and we independently solve MAP within each group, using exact algorithms such as MAP-BBB as a sub-routine (line 6). We merge all groups' most recent frequency strategy to create a complete frequency strategy of all routes (line 8), and its profit is compared with the temporary maximum profit (line 10). The budget of the group that creates the largest marginal profit density is increased by  $\delta$  (line 9). This process iterates until the sum of groups' budgets equals to the total budget b. This method is robust w.r.t. the fluctuating PCR because we calculate the optimal strategy for each group in each iteration. On the other hand, calculating optimal frequency strategy for a group of routes is much faster than that of all routes because the solution space is much smaller. We set  $\delta = b \times \frac{1}{h}$ , where h > 1 is an integer. The quality of the solution increases as q increases — if q = n and h = 1, it finds the optimal solution. The benefit of a small q is the short runtime, while sacrificing optimality. By adjusting q, MAP-G can trade-off between runtime and optimality.

## 6. EXTENSIONS OF THE FREQUENCY-BASED PROFIT MAXIMIZATION PROBLEM

In the above section, we formalized a basic frequency-based profit maximization problem and proposed two search algorithms to solve the problem. In this section, we introduce two extensions of the basic problem, i.e., considering bounded frequencies and future profits.

## 6.1. Bounded Frequency

As shown in Figure 1, the profit function of an airline is rather irregular. For some routes, it is even monotonically decreasing (increasing) w.r.t. frequency. For these routes, we find out that the optimal frequency values computed by the proposed algorithms are rather small (large), with an abrupt decrease (increase) compared with the flight frequency strategy of the last quarter. While in

<sup>&</sup>lt;sup>9</sup>The actual number of routes in a group may slightly vary due to the floor operation.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

practice, even if it is more profitable to change the frequency by a large number, airlines tend to be conservative and make only bounded changes to the frequencies. Interestingly, the BTS data set shows that, in some extreme cases, airlines maintain their flight frequency on a route even when profit is negative. As a result, we vary the constraint in Eq.(7) and introduce tighter frequency bounds:

$$f_i^0(1-\alpha) \le f_i \le f_i^0(1+\alpha),$$
(9)

where  $f_i^0$  is the frequency on a route  $R_i$  in the last quarter, and  $\alpha \in [0, 1]$  is a bounding factor which indicates the "conservativeness" of an airline. With the new bounded frequency constraint, in the adapted MAP-BBB (MAP-BBB1), the root node's frequency range should be altered  $[f_i^0(1 - \alpha), f_i^0(1 + \alpha)]$  and the remaining steps of MAP-BBB are the same.

COROLLARY 6.1. The best-case runtime complexity of the adapted algorithm MAP-BBB1 is  $O((\log(2\alpha \max\{f_i^0\}))^2 \times n)$ , where n is the number of routes.

PROOF. According to Theorem 5.4, the runtime runtime complexity of searching each route  $R_i$  is  $O((\log(\max\{f_i^{max} - f_i^{min}\}))^2 \times n)$ . In MAP-BBB1,  $f_i^{max} = f_i^0(1 + \alpha), f_i^{min} = f_i^0(1 - \alpha)$ . As a result, the best case runtime complexity of MAP-BBB1 is  $O((\log(2\alpha \max\{f_i^0\}))^2 \times n)$ .  $\Box$ 

## 6.2. "Potential" Long Term Profits

Another interpretation of airlines' "conservativeness" in changing (decreasing in particular) their frequency strategies is that, for some highly competitive routes, these airlines (especially large airlines) are hoping to maintain their market share with relatively large frequency numbers. The maintained market, which may not be profitable in the current stage, will "drive off" the other competing airlines and bring potential profits in the future. To better capture this property, we add an extra linear term (w.r.t. frequency) in the objective<sup>10</sup>:

$$\max_{\langle f_i \rangle} \quad \sum_{R_i \in \mathcal{R}} N_i(f_i) + \beta_i f_i \tag{10}$$

subject to 
$$f_i^0(1-\alpha) \le f_i \le f_i^0(1+\alpha), f_i \in \mathbb{N}, \forall R_i \in \mathcal{R}$$
 (11)

$$\sum_{R_i \in \mathcal{R}} C_i f_i \le b. \tag{12}$$

 $\beta_i > 0$  is a route-dependent factor indicating the extent to which future market share is important to the airline. Note that we also set bounded frequency in this extension (as indicated by the constraints in Eq.(11)). With larger frequency, one airline may not have larger immediate profit, while in the new objective, the linear term, which increases w.r.t. frequency, indicates the "potential" increase of future profits.

It is guaranteed that with positive  $\beta_i$  values, the term  $\beta_i f_i$  monotonically increases w.r.t.  $f_i$ . Therefore, by merging this term with the revenue term  $r_i(f_i)$ , the monotonicity of the combined term  $r_i(f_i) + \beta_i f_i$  is inherited. Inspired by this, we replace  $r_i(f_i)$  with  $r_i(f_i) + \beta_i f_i$  in the sub branch and bound (sub BB) process, and the upper bound of sub BB is represented as  $r_i(f_i^0(1 + \alpha)) + \beta_i f_i^0(1 + \alpha) - C_i f_i^0(1 - \alpha)$ . With this adaptation, sub BB finds a proper upper bound for the main BB process and the adapted bilevel branch and bound algorithm (MAP-BBB2) still works.

COROLLARY 6.2. The best-case runtime complexity of MAP-BBB2 is stil $l O((\log(2\alpha \max\{f_i^0\}))^2 \times n)$ , where n is the number of routes.

<sup>&</sup>lt;sup>10</sup>Although potential future profits cannot be precisely measured with the simple linear term, to some extent, it does reveal an airline's concern of long term profit maximization. To better study this, a more complicated model (e.g., using MDPs to formulate long term profits of a series of future quarters or data mining/maching learning methodologies to obtain profit function of a series of future quarters w.r.t. current frequency) should be applied. We leave the long term profit maximization problem as future research.

ALGORITHM 4: ITER-Freq

 1
 Randomly assign values to  $\langle f_{i,A} \rangle$  within  $[f_{i,A}^0(1-\alpha), f_{i,A}^0(1+\alpha)]$  

 2
 repeat

 3
 for  $A_i \in \mathcal{A}$  do

 4
  $| counter \leftarrow 0$  

 5
  $| f_{i,A} \leftarrow Solution of Eqs.(13)-(15)$  

 6
  $| if | f_{i,A} - f_{i,A}' | \leq \varepsilon$  then counter + + 

 7
  $\langle f_{i,A} \rangle \leftarrow \langle f_{i,A} \rangle$  

 8
 until counter = n 

 9
 return  $\langle f_{i,A} \rangle, \forall A \in \mathcal{A}$ 

PROOF. With the adaptation in the sub BB process, the runtime for the searching process of each route is the same with MAP-BBB1.  $\Box$ 

## 7. MULTIPLE STRATEGIC AIRLINES AND NASH EQUILIBRIUM FREQUENCY STRATEGIES

Previously, we assume that only one airline is strategic in deciding its frequencies of a certain set of routes  $\mathcal{R}$ , which may not be true in practice. In this subsection, we investigate the case where multiple airlines are strategic and change their frequencies using our proposed frequency-based profit maximization algorithm and optimally respond to the current frequency strategies of the other airlines. The selfish and strategic behaviors of the competing airlines result in a non-cooperative game among the airlines, for which Nash equilibrium is a natural solution concept. Recall the definition of Nash equilibrium in Section 4, in a Nash equilibrium, the frequency strategies of the each airline  $A \in \mathcal{A}$  satisfy

$$\max_{\langle f_{i,A} \rangle} \quad \sum_{R_i \in \mathcal{R}} N_{i,A}(f_{i,A}), \tag{13}$$

subject to  $f_{i,A}^0(1-\alpha) \le f_{i,A} \le f_{i,A}^0(1+\alpha), f_{i,A} \in \mathbb{N}, \forall R_i \in \mathcal{R}$  (14)

$$\sum_{R_i \in \mathcal{R}} C_{i,A} f_i \le b_A. \tag{15}$$

We add a subscript  $_A$  in  $f_i, f_i^0, C_i$  and b to distinguish different airlines. We adapt Algorithm 1, and propose ITER-Freq (ITER w.r.t. Frequency strategies) to compute Nash equilibrium frequency strategies, which is shown in Algorithm 4. First, we initialize the frequency of each airline A for each route  $R_i$  by randomly assigning a value within a bounded frequency range  $[f_{i,A}^0(1-\alpha), f_{i,A}^0(1+\alpha)]$ . In the repeat loop (Lines 2-8), it updates the optimal frequency strategies of each airline with the for loop (Lines 3-7) and terminates until that, for each airline A and for each route  $R_i$ , the difference between the updated frequency value  $f_{i,A}$  and the original value  $f_{i,A}$  is within a small bound  $\varepsilon$ . Note that after each iteration, the predicted profit function (i.e., MAP-EF) is updated with the new frequency values of the corresponding airlines. To do this, the features described in Section 4 are also updated.

THEOREM 7.1. If ITER-Freq returns a solution, then that solution is the Nash equilibrium frequency.

PROOF. In each repeat loop, ITER-Freq finds the best response of all airlines given their strategies of the last iteration. When the best response strategies of all airlines in the current iteration are equal to the best response strategies of the last iteration, a Nash equilibrium is reached according to its definition.  $\Box$ 

The existence and uniqueness of Nash equilibrium heavily depend on the shape (e.g., concave, convex) of the profit functions of the competing airlines. Unfortunately, the profit functions are represented with a very complicated linear algebra form, and thus it is infeasible to analytically study the existence and uniqueness of Nash equilibrium frequencies. At the same time, it is known that

the runtime complexity of iteration-based computation of Nash equilibrium is unpredictable, while in practice, it normally takes a few number of iterations before convergence of equilibrium (if there is). As a result, we leave further discussion to Section 8 and study these two aspects experimentally.

## 8. EXPERIMENTAL RESULTS

In this section, we first compare MAP-EF with several benchmark methods for both route demand and airline market share prediction. We then show the improvement of the optimal profit obtained based on MAP-EF prediction compared with that based on traditional methods. Last, we compare both scalability and optimality of our proposed algorithms with several benchmarks.

### 8.1. Market Share & Total Demand Prediction

8.1.1. Experimental Environment. For route-specific predictions, we selected the 700 largest routes in terms of the number of passengers. We predicted market share and total demand for the first quarter of 2015, the most recent period for which all data are available, after training with 10 years data up to the last quarter of 2014. We tested 3 pre-existing prediction models for both market share and total demand as described in Section 2, and our proposed method MAP-EF.

For each route, we evaluated with the following three criteria: i) Correlation Coefficient (CC), ii)  $R^2$ , and iii) Mean Absolute Error (MAE) divided by the maximum market share value of a route or divided by true total demand value. These two metrics are much stricter than pure MAE values. A good predictor will perform well under all three metrics.

8.1.2. Experiment Results. Market Share. Table III (resp. Table IV) summarizes mean values (resp. variances) of the three metrics for all routes (All) and for routes with 4 or more operating airlines ( $|\mathcal{A}| \geq 4$ ) — as the number of airlines increases, predictions become more challenging. Among existing models, Market1 shows the best performance. Its CC of 0.82 is quite reasonable with low variance around 0.18, but its poor  $R^2$  of -0.84 indicates some issues. Two metrics revealing contradictory results indicates that the rise/decline of the predicted values may have high error. Thus, Market1 can tell us which airline has larger market share than another, but its absolute market share value is not reliable. Profit optimization based on the best competitor, Market1, does not make sense because even a small error in predicting market share may lead to a high loss in profit. As shown in Tables III and IV, MAP-EF shows very stable performance in terms of both mean and variance for all metrics, especially when  $|\mathcal{A}| \geq 4$ . Note that for all tables,  $\uparrow$  indicates that larger values are preferred and vice versa. The best method is highlighted in yellow.

Table III: Mean values of CC,  $R^2$  and MAE/Max for market share predictions.

|         | All   |                 |         | $ \mathcal{A}  \ge 4$ |                 |         |
|---------|-------|-----------------|---------|-----------------------|-----------------|---------|
|         | CC(↑) | $R^2(\uparrow)$ | MAE     | $CC(\uparrow)$        | $R^2(\uparrow)$ | MAE     |
|         |       |                 | /Max(↓) |                       |                 | /Max(↓) |
| Market1 | 0.82  | -0.84           | 0.133   | 0.82                  | 0.18            | 0.157   |
| Market2 | 0.48  | -3.51           | 0.188   | 0.62                  | -1.92           | 0.212   |
| Market3 | 0.34  | -6.96           | 0.27    | 0.44                  | -3.99           | 0.32    |
| MAP-EF  | 0.96  | 0.88            | 0.052   | 0.95                  | 0.89            | 0.046   |

| Table IV: Variance of CC, $R^2$ and MAE/Max of |  |
|------------------------------------------------|--|
| Market Share Predictions.                      |  |

|         | All                                  |       |                  | $ \mathcal{A}  \ge 4$ |       |                     |
|---------|--------------------------------------|-------|------------------|-----------------------|-------|---------------------|
|         | $CC(\downarrow) R^2(\downarrow)$ MAE |       | $CC(\downarrow)$ | $R^2(\downarrow)$     | MAE   |                     |
|         |                                      |       | /Max(↓)          |                       |       | $ Max(\downarrow) $ |
| Market1 | 0.18                                 | 132.2 | 0.06             | 0.09                  | 4.29  | 0.08                |
| Market2 | 0.54                                 | 109.7 | 0.08             | 0.31                  | 26.77 | 0.09                |
| Market3 | 0.55                                 | 964.9 | 0.10             | 0.35                  | 38.66 | 0.10                |
| MAP-EF  | 0.03                                 | 0.12  | 0.01             | 0.01                  | 0.05  | 0.01                |

**Total Demand.** Whereas route-specific market share prediction is a list (one value for each airline), total demand prediction of a route is a scalar value. Thus, we create two lists, one of true demand and one of predicted demand, and perform CC and  $R^2$  analysis. MAE divided by true demand can be measured for each route and its mean and variance are also summarized in Table V. Again, MAP-EF shows better performance than all other methods.

Effectiveness of additional features in MAP-EF. In order to evaluate the effectiveness of the equilibrium price feature (Step 2 in Figure 2) and route clustering (Step 3 in Figure 2), we created

|         | 00(4)          | $\mathbf{D}^2(\mathbf{A})$ | MADE     |              |
|---------|----------------|----------------------------|----------|--------------|
|         | $CC(\uparrow)$ | $R^2(\uparrow)$            | MAE/True | MAE/True     |
|         |                |                            | (Mean,↓) | (Variance,↓) |
| Demand1 | 0.77           | 0.31                       | 0.29     | 0.06         |
| Demand2 | 0.49           | -1.4                       | 0.57     | 0.1          |
| Demand3 | 0.56           | -0.8                       | 0.49     | 0.08         |
| MAP-EF  | 0.98           | 0.96                       | 0.07     | 0.004        |

Table V: CC,  $R^2$  and MAE divided by true demand of Total Demand Predictions. Note that the variance of CC and  $R^2$  cannot be defined because it predicts a scalar value for each route.

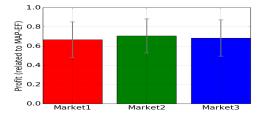


Fig. 5: Profit maximization with different prediction methods (relative to MAP-EF) and 90% confidence interval is shown

two simpler prediction models — one without Step 2 and the other without Step 3. On average, the model without the equilibrium feature achieved 88% (resp. 93%) of the full model's CC (resp.  $R^2$ ), while the model without the clustering achieved 90% (resp. 72%). All these results indicate that profit maximization should be based on the prediction results of MAP-EF, while "optimal" strategies obtained with other models are more likely to be far from real optimal strategies. Nevertheless, we note that MAP-EF builds upon other pre-existing prediction models' findings and hence we build on top of these prior scientists' work.

## 8.2. Profit Maximization

8.2.1. Experimental Environment. We performed experiments on a cluster of 64 machines running Linux with 2.4GHz Xeon CPU and 24GB RAMs. We selected six major airlines and calculated the optimal frequency allocation strategy for their top K biggest markets (a market means an origin-destination pair, i.e., a route). We retrieved real budget information of routes from the BTS dataset such that budget for a set of routes is the sum of their real budgets. For the scalability test, we chose the number of markets  $K = \{2, 3, 4, 5, 6, 7, 8, 9, 10, 20, 30\}$ . We compare the proposed MAP-BBB and MAP-G with two benchmark algorithms, namely N-Greedy (naive greedy algorithm) and DP (dynamic programming). DP is a well-known approach for KPs and RAPS and we refer to Appendix for a detailed description of DP. MAP-BBB is the proposed bilevel branch-and-bound algorithm. We used MAP-BBB as subroutine for MAP-G to solve the profit maximization subproblem in each group.

8.2.2. Maximum Profit of Different Predictors. Ground truth is not available for the true maximal profit an airline could possibly make as their actual quarterly profit may not reflect the total profit that they could have maade. In theory, MAP-BBB is guaranteed to produce the maximal profit under the assumptions made in our model. As we see below, MAP-BBB works when the number of markets is relatively small. In order to explore the profits obtained using predictions made by preexisting market share predictors [Hansen 1990; Suzuki 2000; Wei and Hansen 2005], we compare them with the profits obtained using the MAP-EF predictor. We also obtain the optimal frequency allocation strategies using MAP-BBB for  $K \leq 6$  based on different prediction methods, and then calculate the corresponding profit of these strategies using MAP-EF (for larger K, MAP-BBB, as an exact algorithm, takes an inordinate amount of time). As shown in Figure 5, the optimal profit obtained by all existing methods has a gap of around 30% compared with MAP-EF, which is a huge amount considering the scale of profit (typically several million dollars per route per quarter).

8.2.3. Comparing Different Optimization Algorithms. In this subsection, we first compare several algorithms which are targeted at small K (number of markets) values, such as DP, MAP-BBB, and N-Greedy. Using these algorithms as subroutines, we then tested the performance of MAP-G with large K values. Average optimized profits of airlines and runtime are summarized in Figures 6 and 7. "Real" stands for the average profit of airlines calculated with real frequency strategies in the BTS dataset. Interestingly, "Real" shows worse results than even the simple N-Greedy. We see that

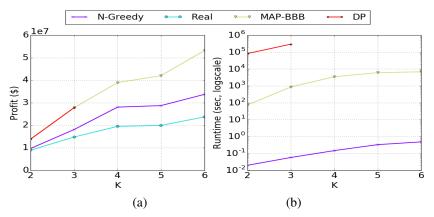


Fig. 6: (a) Optimized profits and (b) Runtime for  $K \leq 6$ .

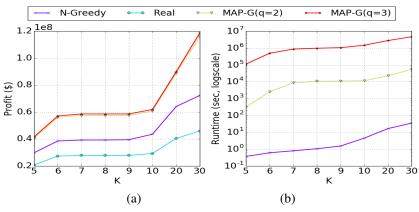


Fig. 7: (a) Optimized profits and (b) Runtime for  $K \geq 5,$ 

with the number of routes in a group as h = 100.

past market share models can only capture about 75% of the profit generated by MAP-EF. This is a substantial loss in absolute dollars.

**Profit and Runtime Analysis for**  $K \le 6$ . As we can see from Figure 6 (a), since both DP and MAP-BBB are exact algorithms, their maximum profit values are the same and are the largest. However, DP's runtime, shown in Figure 6 (b), grows exponentially and we could not finish it on time for  $K \ge 4$ . N-Greedy cannot achieve a reasonable profit. When K = 2, it has around 70% of the optimal profit calculated with exact algorithms; as K increases, however, it decreases to only 60%. Before K = 5, MAP-BBB can find the optimal profit in a few seconds while DP takes around 10,000 seconds in average. This is due to its pseudo polynomial runtime, which behaves more like exponential runtime than polynomial time. This indicates that MAP-BBB scales really well. The MAP-BBB is more suitable as the subsolver of MAP-G.

**Profit and Runtime Analysis for**  $K \ge 5$ . Table VI shows the optimality of MAP-G when K = 4, 5 or 6. The exact maximum profit when  $K \ge 7$  cannot be computed as the exact algorithms either run out of memory or take inordinately long. But in cases when  $K \le 6$ , MAP-G achieves 99% of the maximum profit suggesting that it does very well. As expected, MAP-G is robust w.r.t. the problem of fluctuating profit and independent processing of each route from which N-Greedy suffers. Figure 7 (a) shows that MAP-G is consistently better than N-Greedy and N-Greedy obtains only about 70% of MAP-G's profit, suggesting that MAP-G is far superior. We confirm that q = 3

Table VI: Profit maximization of MAP-G(BBB) with q = 3 (relative to the optimal profit).

|        | K = 4 | K = 5 | K = 6 |
|--------|-------|-------|-------|
| Profit | 0.99  | 0.97  | 0.99  |

(i.e. groups of similar routes are limited to have 3 routes in them) leads to an increase in profit than when q = 2 for MAP-G — in Figure 7 (a), MAP-G with q = 3 is consistently better than q = 2 — which corresponds to our conjecture that optimality will be improved as the size of groups increases.

The profit increase from "Real" to the optimized one is quite impressive. Airlines can increase their profits by at least 55% by adopting MAP based on our model with available data. But please note that we assume the behaviors of other airlines are fixed, which is not the case in reality. In the following, we will test the robustness of MAP, i.e., when the frequency and pricing strategies of other airlines also vary (and not known in advance), how much profit can be achieved by the airline to be optimized.

**Robustness Analysis.** In the above experiments, we assume that the frequency allocation and pricing strategies of all other airlines are fixed and known in advance. We now test the robustness of our approach, i.e., we test the airline profits obtained by our approach when the frequency and pricing strategies of other airlines vary. To do this, we randomly varied price (resp. frequency) by a rate in  $\{[-20\%, -10\%), [-10\%, 0), 0, [0, 10\%), [10\%, 20\%]\}$ . We first compute the optimal strategy by assuming that the other airlines' behaviors are fixed (because they are unknown). We then evaluate this obtained optimal strategy with the prediction model of the changed price and the frequency strategies of other airlines. We computed the ratio of the sub-optimal profit (not knowing other airlines' price/frequency changes) to the optimal profit (knowing the changed price/frequency strategies of other airlines) — in order to calculate the exact optimal profit on time we tested Kup to 6. For each frequency and price change rate combination, we generated 30 scenarios with all different random seeds and profits are averaged on them. As shown in Figure 8, this profit ratio is always larger than 0.8, which indicates robustness of our MAP approach even with a 40% fluctuation of both price and frequency. Moreover, it is shown that for a fixed frequency change rate, the profit ratio is almost the same for all price change rates, which means that frequency change is more effective in airlines' competition. Last, the largest ratio happens in the case that competitors increase frequencies, which means MAP is more effective at competitive markets.

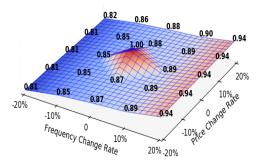


Fig. 8: Profits by varying price and frequency of other competitors

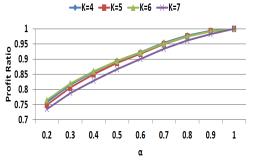


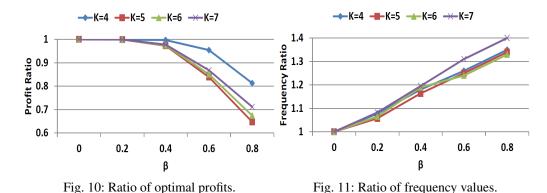
Fig. 9: Ratio of optimal profits for bounded frequency and unbounded frequency.

## 8.3. Extensions of Profit Maximization

**Bounded Frequencies.** Figure 9 shows the averaged optimal profit values of airlines operating on different number of routes with varying frequency ranges, where the x-axis represents different values of  $\alpha$  from 0 to 0.8 (recall that the frequency range is set as  $[f_i^0(1-\alpha), f_i^0(1+\alpha)]$ ), the y-axis represents the optimal profit with bounded frequencies (related to the optimal profit with unbounded

frequencies), and the K value in the legend means the number of routes. With larger  $\alpha$  values (i.e., larger frequency ranges), the airlines can obtain larger short term profits. While in practice, airlines normally do not make abrupt changes in their flight frequencies – even when larger changes in profits may lead to more profits, which implies the "conservativeness" of airlines.

**Considering Potential Profits.** To evaluate the effect of airlines' concern on potential profits, we first compare the optimal profit obtained in the extended profit optimization problem in Eqs.(10)-(12) with that computed by the basic profit optimization problem in Eqs.(6)-(8). To reveal different extent of importance of potential profits, we set  $\beta_i$  as the airline's per flight cost of a route  $R_i$  multiplied by a varying factor  $\beta$ . As shown in Figure 10, the x-axis denotes different  $\beta$  values from 0.4 to 0.8, and the y-axis denotes the ratio of profits obtained by the above two optimization problems, and K denotes the number of routes considered.



As we can see, the profit ratio is always smaller than 1, and it decreases w.r.t. the value of  $\beta$ . Meanwhile, Figure 11 shows the ratio of the averaged optimal frequency values obtained by the extended profit optimization problem and the basic profit optimization problem. For all  $\beta$  values, the frequency ratio is always larger than 1, and it increases w.r.t. the value of  $\beta$ . Combining these two figures, we can see that 1) when future profit is taken into consideration, airlines do not "rush" for immediate profit, and 2) when airlines put more weight on potential profits, they tend to invest more on the flight frequencies even it is not more profitable currently.

## 8.4. Equilibrium Frequencies

In this part, we evaluate the convergence behavior and profits obtained with Nash equilibrium frequency. To do it, from the 5 largest airlines (denoted as  $A_1, A_2, A_3, A_4, A_5$ ) in the US, we select 3 out of them which we assume are strategic and use Nash equilibrium frequency strategies, and then evaluate when these 3 airlines are competing over different number of routes (K = 1, 2, 3). Since there are in total 10 combinations of airlines ( $C_3^5 = 10$ ), for each number of routes, all the following results are averaged over 10 cases. Table VII shows the percentage of convergence<sup>11</sup> to equilibrium and, if a case converges, the averaged number of iterations required to reach the equilibrium (not counting the cases where it does not converge). For percentage of convergence, the number in the denominator means the number of cases reported. Note that for K = 3, this number is not equal to 10 because for one case, not all of the three airlines are operating over the same three routes simultaneously. We note that some cases do not converge to a Nash equilibrium within 10 iterations. However, for those cases which do converge, they converge very quickly – 1.8 to 2.4 iterations on average. Our interpretation for the cases which do not converge is that, for these routes, the profit function of certain airline(s) obtained with our MAP-EF method is not concave, and the frequency

 $<sup>^{11}</sup>$ Note that we regard a case as not able to reach Nash equilibrium when the ITER-Freq algorithm does not converge within 10 iterations.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

values are restricted to natural number. We prove in the following theorem (Theorem 8.1 that, when the frequency domain is relaxed to continuous and the profit function of each competing airline is concave, Nash equilibrium always exists.

THEOREM 8.1. When the frequency domain of airlines (described in Eqs.(14)-(15)) is relaxed from natural number (i.e.,  $f_{i,A} \in \mathbb{N}$ ) to positive real number (i.e.,  $f_{i,A} \in \mathbb{R}^+$ ), and the profit function  $\sum_{R_i \in \mathbb{R}} N_{i,A}(f_{i,A})$  of each airline A is concave w.r.t. its frequency strategy  $\mathbf{f}_A$ , Nash equilibrium (w.r.t. frequency) always exists.

PROOF. Denote the domain described in Eqs.(14)-(15) (with linear relaxation) as D. Accordingly,  $D_A$  denotes the domain for each airline A and  $D_{-A}$  denotes the domain for all the other competing airlines  $A \in \mathcal{A}$  except A. For each airline A as a player, given the frequency strategies  $\mathbf{f}_{-A}$  of all the other competing airlines, it will select an optimal frequency strategy which maximizes its profit function, which is a mapping  $\phi_A : D_A \to D_{-A}$  defined as  $\phi_A(\mathbf{f}_{-A}) = \mathbf{f}_A$ . Furthermore, according to Eqs.(14)-(15), both the domain and range of the mapping  $\phi_A(\mathbf{f}_{-A})$  are compact (closed and bounded). Combining the compactness of the domain and range of the mapping with the concavity of airline A's profit function  $\sum_{R_i \in \mathcal{R}} N_{i,A}(f_{i,A})$ , it is guaranteed that the mapping  $\phi_A(\mathbf{f}_{-A})$ is non-empty (*existence*). The compactness of  $D_{-A}$  along with the linear relaxation also implies that the mapping  $\phi_A(\mathbf{f}_{-A})$  is *upper hemicontinuous*.

The existence and upper hemicontinuity of the mapping  $\phi_A(\mathbf{f}_{-A})$  are naturally inherited by the mapping  $\phi : D \to D$  defined as  $\phi(\mathbf{f}) = \times_{A \in \mathcal{A}} \phi_A(\mathbf{f}_{-A})$ , where **f** is a matrix which denotes the frequency strategies of all the competing airlines. In addition, Eqs.(14)-(15) (with linear relaxation) imply that *D* is a *simplex* (and closed). Applying Kakutani's fixed point theorem [35], we conclude that there always exists a fixed point **f** in the domain *D* which maps to a same point **f** in the range *D* with the mapping  $\phi(\mathbf{f})$ . As a result, with the above stated linear relaxation and concavity assumption, the Nash equilibrium (w.r.t. frequency) always exists.  $\Box$ 

It is worth mentioning that, in this problem, the concavity of airlines' profit functions is not a necessary condition (but only sufficient condition) of the existence of Nash equilibrium. Nonetheless, evidence (e.g., Figure 1 where profit airlines' functions of one route are displayed) shows that the profit functions of airlines are sometimes non-concave, which we think is a major reason why some cases do not converge to equilibrium within 10 iterations. However, it is still possible that Nash equilibrium still exists when the profit functions of some competing airlines are not globally concave, but for example, are locally concave.

| K                         | 1    | 2    | 3   |
|---------------------------|------|------|-----|
| Percentage of convergence | 5/10 | 4/10 | 5/9 |
| Number of iterations      | 1.8  | 2    | 2.4 |

Table VII: The convergence behavior of Nash equilibrium frequency.

| airline K | 1           | 2           | 3           |
|-----------|-------------|-------------|-------------|
| $A_1$     | [1.27,1.30] | [1.37,1.44] | [1.36,1.43] |
| $A_2$     | [2.18,2.73] | [2.81,2.94] | [2.30,2.27] |
| $A_3$     | [1.51,1.56] | [1.58,1.75] | [1.46,1.69] |
| $A_4$     | [N/A]       | [N/A]       | [1.34,1.27] |
| $A_5$     | [1.33,1.67] | [1.14,1.30] | [2.51,2.90] |

Table VIII: The profits obtained by airlines under equilibrium.

ACM Transactions on Intelligent Systems and Technology, Vol. V, No. N, Article A, Publication date: January YYYY.

To evaluate the profits obtained by airlines with equilibrium strategy, we compare the profits of the airlines for three situations: 1) airlines use current frequency strategy; 2) only one airline is strategic; and 3) multiple airlines are strategic. As shown in Table VIII, we show the profits obtained by the 5 airlines over different number of routes. For each cell in the table, the left number in the bracket denotes the ratio of profits of the second and first situations, while the right number denotes the ratio of profits for the third and first situations. Note that N/A means not applicable. This is because for K = 1 and K = 2, all the cases where airline  $A_4$  is involved do not converge to equilibrium and thus we do not record the profits of these cases. All the profit ratios are averaged among the cases where equilibrium frequencies converge. For example, for airline  $A_1$  and K = 1, if in 4 out of 6 (=  $C_2^4$ ) cases the equilibrium frequencies converge, both the left and right profit ratio numbers in the for  $A_1$  and K = 1 are averaged over 4 cases. As we can see, first, for all number of routes and all airlines, the profits obtained in both the second (only one airline is strategic) and third (when multiple airlines are strategic) situations are larger than that obtained in the first situation (airlines use current frequency strategy). Second, it shows that, somewhat counter-intuitively, with a few exceptions (highlighted with yellow), the profits obtained when multiple airlines are strategic are mostly even larger than those obtained when only one airline is strategic. Note that this result is applicable under the assumption that each airline is only optimizing one-shot profit. When each airline is only concerned about short term profit, instead of "competing" with each other by increasing frequencies, airlines tend to "concede" and decrease their frequencies for routes that are non-profitable. This result, together with Figures 9 - 11, is a vast improvement that provides an enlightenment to the researchers for a more precise profit prediction model which takes into account not only profits in the current period, but also profits in the future.

## 9. CONCLUSION AND FUTURE WORK

In this paper, we propose the MAP framework for optimal frequency allocation over multiple routes. We make three key contributions. i) We design a novel ensemble predictor based on past regressionbased work, clustering techniques and game theoretic analysis, which have never been utilized for this purpose; ii) based on the prediction, we design several algorithms to solve the profit maximization problem; iii) we conduct extensive experiments. We show that the prediction performance of MAP-EF is much better than past methods. We also compare runtime and optimality of our proposed optimization algorithms with benchmarks. We also show that MAP increases profitability per route by at least 55%. Even if there are factors we did not consider on the basis of open source data and these numbers are reduced substantially if private airline data was to be used, the increased profitability would still be substantial. Furthermore, we show that considering bounded frequencies and future profits, the one-shot profit might be less compared with that without these concerns, which to some extent reveals the practical implications of the current airline industry – airlines are usually "conservative" in changing their frequencies and concern more about long term profits. Last, we show the optimal frequencies and profits of airlines when there are multiple strategic airlines.

We consider two potential directions for future work. First, our current optimization considers only frequency allocation. In the future, we may also consider joint-optimization over frequency and pricing. However, the monotonicity property of revenue and cost is not guaranteed with ticket pricing<sup>12</sup> and it is already one of the hardest KPs and RAPs with only frequency being considered. Second, we currently use a simple linear term (w.r.t. frequency) to evaluate the effects of current frequency strategies on future profits, which has limited veracity to represent long term profits. To more explicitly model future profits, a more realistic model should be employed, such as MDPs, POMDPs or more sophisticated data mining/machine learning methodologies.

## REFERENCES

Gershon Alperovich and Yaffa Machnes. 1994. The role of wealth in the demand for international air travel. *Journal of Transport Economics and Policy* 28, 2 (1994), 163–173.

<sup>&</sup>lt;sup>12</sup>By decreasing ticket price, market share will increase but revenue may or may not increase due to the change of price.

- Bo An, Haipeng Chen, Noseong Park, and VS Subrahmanian. 2016. MAP: Frequency-Based Maximization of Airline Profits based on an Ensemble Forecasting Approach. In Proceedings of the 22nd ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 421–430.
- David Arthur and Sergei Vassilvitskii. 2007. K-Means++: The advantages of careful seeding. In Proceedings of the 18th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA). 1027–1035.
- BEA. 2016. Bureau of Economic Analysis. (2016). http://www.bea.gov/regional/downloadzip.cfm.
- Dipasis Bhadra and Jacqueline Kee. 2008. Structure and dynamics of the core US air travel markets: A basic empirical analysis of domestic passenger demand. *Journal of Air Transport Management* 14, 1 (2008), 27–39.
- Dipasis Bhadra and Michael Wells. 2005. Air Travel by State Its Determinants and Contributions in the United States. Public Works Management & Policy 10, 2 (2005), 119–137.
- Christopher M. Bishop. 2006. Pattern Recognition and Machine Learning (Information Science and Statistics). Springer-Verlag New York, Inc.
- Kurt M Bretthauer and Bala Shetty. 2002. The nonlinear knapsack problem–algorithms and applications. *European Journal* of Operational Research 138, 3 (2002), 459–472.
- BTS. 2016. Bureau of Transportation Statistics. (2016). http://www.rita.dot.gov/bts/data\_and\_statistics/by\_mode/airline\_ and\_airports/index.html
- Alberto Caprara, Hans Kellerer, Ulrich Pferschy, and David Pisinger. 2000. Approximation algorithms for knapsack problems with cardinality constraints. *European Journal of Operational Research* 123, 2 (2000), 333–345.
- U.S. Census. 2016. Metropolitan and Micropolitan. (2016). https://www.census.gov/population/metro/data/.
- George B Dantzig. 1957. Discrete-variable extremum problems. Operations research 5, 2 (1957), 266–288.
- Martin Ester, Hans-Peter Kriegel, Jörg Sander, and Xiaowei Xu. 1996. A density-based algorithm for discovering clusters in large spatial databases with noise. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 226–231.
- Martin A. Fischler and Robert C. Bolles. 1981. Random Sample Consensus: A Paradigm for Model Fitting with Applications to Image Analysis and Automated Cartography. *Commun. ACM* 24, 6 (June 1981), 381–395.
- Mark Hansen. 1990. Airline competition in a hub-dominated environment: An application of noncooperative game theory. *Transportation Research Part B: Methodological* 24, 1 (1990), 27–43.
- H Keller, U Pferschy, and D Pisinger. 2004. Knapsack problems. Springer-Verlag Berlin.
- Wei Lu, Stratis Ioannidis, Smriti Bhagat, and Laks VS Lakshmanan. 2014. Optimal recommendations under attraction, aversion, and social influence. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 811–820.
- Silvano Martello and Paolo Toth. 1977. Branch-and-bound algorithms for the solution of the general unidimensional knapsack problem. Advances in Operations Research 13, 9 (1977), 295–301.
- NTSB. 2016. National Transportation Safety Board. (2016). http://www.ntsb.gov/\_layouts/ntsb.aviation/index.aspx.
- Ulrich Pferschy. 1999. Dynamic programming revisited: Improving knapsack algorithms. *Computing* 63, 4 (1999), 419–430.
  David Pisinger. 2000. A minimal algorithm for the bounded knapsack problem. *INFORMS Journal on Computing* 12, 1 (2000), 75–82.
- CE. Rasmussen and CKI. Williams. 2006. Gaussian Processes for Machine Learning. MIT Press.
- Peter J Rousseeuw. 1987. Silhouettes: A graphical aid to the interpretation and validation of cluster analysis. J. Comput. Appl. Math. 20 (1987), 53–65.
- Yoshinori Suzuki. 2000. The relationship between on-time performance and airline market share: A new approach. Transportation Research Part E: Logistics and Transportation Review 36, 2 (2000), 139–154.
- Robert L. Thorndike. 1953. Who belongs in the family. Psychometrika 18, 4 (1953), 267–276.
- Wenbin Wei and Mark Hansen. 2005. Impact of aircraft size and seat availability on airlines demand and market share in duopoly markets. *Transportation Research Part E: Logistics and Transportation Review* 41, 4 (2005), 315–327.
- Jian Xu, Kuang-chih Lee, Wentong Li, Hang Qi, and Quan Lu. 2015. Smart Pacing for Effective Online Ad Campaign Optimization. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 2217–2226.
- Weinan Zhang, Shuai Yuan, and Jun Wang. 2014. Optimal real-time bidding for display advertising. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 1077–1086.
- Yada Zhu, Hongxia Yang, and Jingrui He. 2015. Co-Clustering based Dual Prediction for Cargo Pricing Optimization. In Proceedings of the ACM International Conference on Knowledge Discovery and Data Mining (SIGKDD). 1583–1592.

## APPENDIX

## A. FEATURE TABLES GENERATED AFTER STEP 2 OF MAP-EF

Tables IX and X separately present the example tables of variables for market share and total demand prediction, which are generated in Step 2 of MAP-EF. We take Table IX as an example to illustrate. In this table, the first 4 columns ("Route, Quarter, Airline, Existing Variables") are existing features which are also used by past works. Column 5 is the output in Step 1 of MAP-EF, including the parameter values  $\eta_k$  in the math model and the intermediate predicted market share values. Column 6 is the difference between Nash equilibrium price and the real price of an airline, which is obtained in Step 2. The highlighted last column ("True market share") indicates the dependent variable which is to be predicted. Based on both the market share related features extracted in Table IX and the demand related features in Table X, we further employ clustering techniques in Step 3 to find similar routes.

Table IX: Variables to predict airline market share of  $R_1$  by MAP-EF. "True Market Share" (highlighted) is the dependent variable to be predicted.

| Route | Quarter | Airline | Existing Variables        | Outputs of Step 1                            | Equil. Price - Real Price | True Market Share |
|-------|---------|---------|---------------------------|----------------------------------------------|---------------------------|-------------------|
| $R_1$ | 2010Q1  | $A_1$   | Price, Freq, Delay, · · · | 15% (Predicted value), $\eta_k$ (Parameters) | -50                       | 10%               |
| $R_1$ | 2010Q1  | $A_2$   | Price, Freq, Delay, · · · | $85\%, \eta_k$                               | 60                        | 90%               |
| $R_2$ | 2010Q1  | $A_1$   | Price, Freq, Delay, · · · | 11% (Predicted value), $\eta_k$ (Parameters) | -10                       | 5%                |
| $R_2$ | 2010Q1  | $A_2$   | Price, Freq, Delay, · · · | $89\%, \eta_k$                               | 50                        | 95%               |
|       |         |         |                           |                                              |                           |                   |
| :     |         | :       | :                         |                                              | :                         | :                 |

Table X: Variables to predict total demand of  $R_1$  by MAP-EF. "True Total Demand" (highlighted) is the dependent variable to be predicted.

| Route | Quarter | Existing Variables                   | Outputs of Step 1                                  | Equilibrium Price | True Total Demand |
|-------|---------|--------------------------------------|----------------------------------------------------|-------------------|-------------------|
| $R_1$ | 2010Q1  | Avg Price, Population, Income, · · · | 20,000 (Predicted value), $\lambda_k$ (Parameters) | \$340             | 22,000            |
| $R_1$ | 2010Q2  | Avg Price, Population, Income, · · · | 25,000, $\lambda_k$                                | \$350             | 24,000            |
| $R_2$ | 2010Q1  | Avg Price, Population, Income, · · · | 19,000 (Predicted value), $\lambda_k$ (Parameters) | \$360             | 21,000            |
| $R_2$ | 2010Q2  | Avg Price, Population, Income, · · · | 18,000, $\lambda_k$                                | \$250             | 20,000            |
|       |         |                                      |                                                    |                   |                   |
| 1 :   | :       |                                      |                                                    | :                 | :                 |

### **B. PREDICTION RESULTS OF OTHER REGRESSION TECHNIQUES**

Tables XI and XII show the market share prediction performances of all tested regression algorithms including MAP-EF(Ridge), MAP-EF(Lasso), MAP-EF(Lars), and MAP-EF(TheilSen). We refer to Section 8.1 for a description of the experiment settings and the three metrics (CC,  $R^2$ , MAE/Max) for measuring prediction performance. As we can see in Table XI, our selected MAP-EF with RANSAC and GPR (herein we call it MAP-EF for short) shows the best performance in the mean values of all metrics. While the mean metrics values of some regression algorithms are quite close to MAP-EF(e.g., MAP-EF(Lars)), it is shown in Table XII that their variances are much larger than MAP-EF, which means others regression algorithms are not as stable as MAP-EF. This is the main reason why we choose MAP-EF.

Table XIII shows the total demand prediction results for all the regression algorithms. As we can see, the mean values of both CC and  $R^2$  of MAP-EF are larger than the other regression algorithms, while the mean and variance values of MAE/True are much smaller. This also indicates the superiority of MAP-EF while predicting total demand.

|                  | All   |                 |         | $ \mathcal{A}  \ge 4$ |                 |         |
|------------------|-------|-----------------|---------|-----------------------|-----------------|---------|
|                  | CC(↑) | $R^2(\uparrow)$ | MAE     | CC(†)                 | $R^2(\uparrow)$ | MAE     |
|                  |       |                 | /Max(↓) |                       |                 | /Max(↓) |
| Market1          | 0.82  | -0.84           | 0.133   | 0.82                  | 0.18            | 0.157   |
| Market2          | 0.48  | -3.51           | 0.188   | 0.62                  | -1.92           | 0.212   |
| Market3          | 0.34  | -6.96           | 0.27    | 0.44                  | -3.99           | 0.32    |
| MAP-EF(Ridge)    | 0.92  | 0.65            | 0.07    | 0.91                  | 0.64            | 0.07    |
| MAP-EF(Lasso)    | 0.93  | 0.71            | 0.06    | 0.93                  | 0.69            | 0.06    |
| MAP-EF(Lars)     | 0.94  | 0.71            | 0.06    | 0.91                  | 0.70            | 0.06    |
| MAP-EF(TheilSen) | 0.82  | 0.13            | 0.07    | 0.81                  | 0.70            | 0.07    |
| MAP-EF           | 0.96  | 0.88            | 0.052   | 0.95                  | 0.89            | 0.046   |

Table XI: Mean values of CC,  $R^2$  and MAE/Max for market share predictions.  $\uparrow$  indicates that larger values are preferred and vice versa. The best method is highlighted in yellow.

Table XII: Variance of CC,  $R^2$  and MAE/Max of Market Share Predictions.

|                  | All              |                   |         | $ \mathcal{A}  \ge 4$ |                   |         |
|------------------|------------------|-------------------|---------|-----------------------|-------------------|---------|
|                  | $CC(\downarrow)$ | $R^2(\downarrow)$ | MAE     | $CC(\downarrow)$      | $R^2(\downarrow)$ | MAE     |
|                  |                  |                   | /Max(↓) |                       |                   | /Max(↓) |
| Market1          | 0.18             | 132.2             | 0.06    | 0.09                  | 4.29              | 0.08    |
| Market2          | 0.54             | 109.7             | 0.08    | 0.31                  | 26.77             | 0.09    |
| Market3          | 0.55             | 964.9             | 0.10    | 0.35                  | 38.66             | 0.10    |
| MAP-EF(Ridge)    | 0.06             | 2.66              | 0.02    | 0.05                  | 3.07              | 0.03    |
| MAP-EF(Lasso)    | 0.06             | 2.31              | 0.02    | 0.04                  | 3.2               | 0.02    |
| MAP-EF(Lars)     | 0.06             | 2.33              | 0.02    | 0.04                  | 3.1               | 0.03    |
| MAP-EF(TheilSen) | 0.23             | 18.54             | 0.02    | 0.21                  | 0.13              | 0.02    |
| MAP-EF           | 0.03             | 0.12              | 0.01    | 0.01                  | 0.05              | 0.01    |

Table XIII: CC,  $R^2$  and MAE divided by true demand of Total Demand Predictions. Note that the variance of CC and  $R^2$  cannot be defined because it predicts a scalar value for each route.

|                  | CC(↑) | $R^2(\uparrow)$ | MAE/True | MAE/True     |
|------------------|-------|-----------------|----------|--------------|
|                  |       |                 | (Mean,↓) | (Variance,↓) |
| Demand1          | 0.77  | 0.31            | 0.29     | 0.06         |
| Demand2          | 0.49  | -1.4            | 0.57     | 0.1          |
| Demand3          | 0.56  | -0.8            | 0.49     | 0.08         |
| MAP-EF(Ridge)    | 0.34  | -4.68           | 0.22     | 0.07         |
| MAP-EF(Lasso)    | 0.94  | 0.92            | 0.12     | 0.02         |
| MAP-EF(Lars)     | 0.95  | 0.93            | 0.12     | 0.02         |
| MAP-EF(TheilSen) | 0.95  | 0.88            | 0.14     | 0.01         |
| MAP-EF           | 0.98  | 0.96            | 0.07     | 0.004        |

# C. DYNAMIC PROGRAMMING APPROACH

The following recurrence formula shows the suggested dynamic programming approach:

$$N^*(i,w) = \max_{\substack{k=0\\k=0}}^{f_i^{max}} \{N^*(i-1,w-k\cdot C_i) + N_i(k)\},\$$

where  $N^*(i, w)$  is the best profit we can get when operating flights from  $R_1$  to  $R_i$  and the budget is w.  $N_i(k)$  is the profit of operating k flights on  $R_i$ . Hence,  $N^*(n, b)$  will output the optimal strategy of the profit maximization.

*Example* C.1. Assume there are three routes,  $R_1$ ,  $R_2$ , and  $R_3$ ; and  $C_1 = C_2 = C_3 = 10$  and b = 100. The optimal profit is  $N^*(3, 100) = \max\{N^*(2, 100), N^*(2, 90) + N(3, 1), N^*(2, 80) + N(3, 2), \dots\}$ .

## **D. SCATTER PLOTS**

Figure 12 shows full details of market share predictions, especially when  $|\mathcal{A}| \geq 4$  (the most challenging prediction case). Market share prediction of a route is evaluated with three metrics: CC,  $R^2$ , and MAE/Max. For each pair of possible combination of these metrics, we show how well each prediction model predicts in the figure. As is shown, MAP-EF's dots are always collected at the "good" corner of the chart. To illustrate, we take Figure 12(a) as an example, which shows the prediction. In this figure, MAP-EF's dots always stay at the top right corner of the chart, which means it always has large  $R^2$  and CC values. For the dots of existing prediction methods, while the dots of some routes stay at the top right corner, the rest of them do not. Worse still, some dots are far away from the corner. As is pointed out, even a small prediction gap can lead to a large profit loss in reality. These results indicate that market share prediction should be performed by MAP-EF.

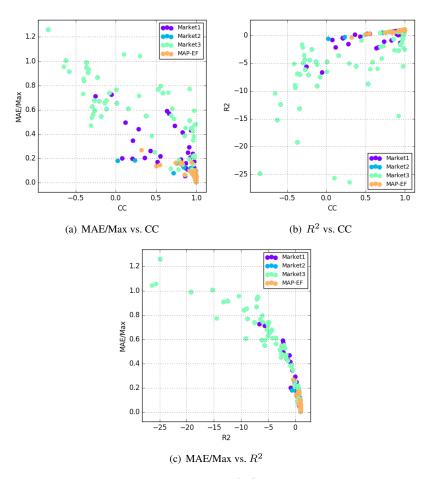


Fig. 12: Scatter plot of market share predictions when  $|A| \ge 4$ . Each dot corresponds to a prediction of route.