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Abstract—In cloud computing, a private (secondary) cloud can
1) outsource workload to public (primary) clouds via vertical
federation or 2) share resources with other secondary clouds
through horizontal federation to enhance its service quality.
While there have been attempts to establish a joint vertical and
horizontal cloud federation (VHCEF), little is known regarding the
economic aspects (e.g., what stable cooperation pattern will form,
will it improve efficiency) of such a complex cloud network where
secondary clouds are self-interested. To fill the gap, we analyze
the interrelated workload factoring and federation formation
among secondary clouds, while providing scalable algorithms to
assist them to optimally select partners and outsource workload.
We use a game theoretic approach to model the federation
formation of clouds as a coalition game with externalities.
We adopt a pessimistic core to characterize the cooperation
stability and formulate its computation as a bilevel optimization
problem. The properties of the problem are explored and efficient
algorithms are developed to solve it. Experimental results show
that the two common practices (no-cooperation and all-in-one
federation) are not always stable. The results also show that
compared with the two common practices, secondary clouds can
decrease service delay penalty by around 11% with the proposed
VHCF network.

Index Terms—Cloud computing, cloud federation, workload
factoring, coalition formation, core, bilevel optimization.

I. INTRODUCTION

Cloud computing has emerged as a popular service model
where computing resources can be accessed by users over
the Internet on a usage basis, avoiding upfront investment on
the physical infrastructures. It has been shown that individual
private clouds (secondary clouds) can form horizontal cloud
federations [1] and scale up their services by pooling their
computing resources. Furthermore, the horizontally federated
clouds can vertically outsource part of their requests to a public
cloud (primary cloud) and pay the usage fee, which is called
workload factoring/outsourcing. For example, in Fig. 1, if
secondary cloud A receives 80 requests from its end users and
has only 60 computing resource units (e.g., CPU, memory, and
bandwidth), while secondary cloud B receives 20 requests and
has 30 resource units, then B can share its redundant resources
to process the excessive requests from A and receive a share
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Fig. 1: A typical VHCF network. 4 secondary clouds form 2
horizontal federations. The horizontal federations can also rent
resources from the primary cloud through a vertical federation.

of payoff from A, while for A, this payoff share is usually
lower than the cost of outsourcing to primary clouds.

Meanwhile, the total number of requests is still larger than
the total number of resources. To finish the requests on time
and avoid the penalty of violating service level agreements
(SLAs), the formed horizontal federation can further outsource
their requests to the primary cloud via a vertical federation.
Different from the resource sharing in a horizontal federation,
the resources of the primary clouds are on a renting basis
and are often costly. Moreover, the resources in a horizontal
federation are dedicated to processing internal requests, while
in a vertical federation, the resources of a primary cloud are
shared by different external requests. Therefore, the perfor-
mance (i.e., processing time) of the requests in a primary cloud
depends on the number of external requests outsourced by
other entities [2]. While horizontal federations may still expe-
rience resource shortage or redundance, vertical federation is
a perfect complement. Due to the merits, such a joint vertical
and horizontal cloud federation (VHCF) network is evaluated
both theoretically [3] and practically (e.g., Aristotle federated
cloud [4] and EUBrazil Cloud Connect [5]).

Although the technical aspects of both the vertical and
horizontal federations have been investigated [3], [6], [7], the
economic aspects of forming such a joint cloud federation
have never been studied, while these individual private clouds,
which can be treated as intelligent agents in a network, are
usually self-interested. To this end, three intrinsic questions
remain to be answered: 1) Federation Formation. If coopera-
tion incurs a cost, what is the stable cooperative pattern? Is
the grand coalition' - a coalition of all the clouds - always

'We use “horizontal federation” and “coalition” interchangeably, to denote
a group of cooperating secondary clouds. Note that we do not treat “vertical
federation” as a coalition, since the ‘“sharing” of resources via vertical
federation is on a renting basis.
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stable? How much benefit will each coalition obtain, and
how to divide the benefit among the coalition members so
that nobody wants to deviate? 2) Workload factoring. Since
a coalition’s task performance in a primary cloud depends on
the strategies of the competing coalitions, what is the optimal
workload factoring strategy of each coalition? 3) Efficiency. Is
it beneficial for a group of secondary clouds to employ such
a VHCF network?

Due to the interdependency of the competitive workload
factoring among different coalitions and the cooperative re-
source and payoff sharing within a coalition, it is not easy
to answer the aforementioned questions. Recently, several
game theoretic approaches have been proposed to study the
economics of cloud computing [2], [8]-[18] and other forms of
networks [19]-[25]. Unfortunately, these approaches ignored
either cooperation or competition among the players (see
Section II for details), and thus their methods cannot be
applied. We make four key contributions towards answering
these challenging questions.

First, we present a new game theoretic model which consid-
ers both cooperation and competition among cloud providers
in the joint VHCF network. We first establish that for a
fixed coalition structure (a partition of the secondary clouds),
the horizontal cloud federations play a competitive workload
factoring game. We then propose a coalition game to study the
federation formation among the secondary clouds. We show
that the coalition value, which is decided by the workload
factoring game, depends not only on a coalition itself, but also
on the specific coalition structure. To characterize the most
stable situation where no subset of secondary clouds want to
deviate, we use the commonly adopted least pessimistic core
as the solution concept.

Second, based on the analysis, we formulate the compu-
tation of the least pessimistic core as a bilevel optimization
problem. The lower level problem computes Nash equilibrium
strategies of the workload factoring game given a fixed coali-
tion structure (it answers the second question above), and the
upper level problem, using the lower level problem as a sub-
routine, finds the least pessimistic core and the corresponding
coalition structure and payoff division (the first question).

Third, we exploit the structural properties of the game and
design efficient algorithms to solve the bilevel optimization
problem. We first prove the strict concavity of a coalition’s
value function. Using this property, we establish the existence
and uniqueness of the pure strategy Nash equilibrium of the
workload factoring game and significantly simplify the lower
level problem. For the upper level problem which belongs to
the hardest class of combinatorial optimization problems, we
propose a binary search algorithm, which prunes the solution
space (i.e., feasible coalition structures) based on two heuristic
rules. Our proposed algorithms can assist secondary providers
to optimally select partners, decide workload factoring strate-
gies and negotiate payoff in a VHCF network.

Last, we conduct extensive experimental evaluations. We
first show through a simple scenario the iterrelated workload
factoring and federation formation. We then evaluate the
superadditivity and externality. We also study the coalition
formation results under different network conditions and show

that, the two common practices - no-cooperation and the grand
coalition - may not be stable if cooperation incurs a cost.
We also show the improvement of the secondary clouds’ total
utility by using the VHCF network, comparing with no coop-
eration and grand coalition (it answers the last question above).
Finally, we show the efficiency of the proposed algorithms in
terms of runtime and optimality.

The rest of this paper is organized as follows. Related
work is reviewed in Section II. Section III describes the
cloud network model. Section IV presents the game theoretic
analysis of the VHCF network. Section V presents algorithms
for the formulated problem. Section VI provides experimental
results. The paper is summarized in Section VII. We refer to
Table I for a list of notations.

II. RELATED WORK

Our work falls into the broad research area of economics of
cloud computing, which can be categorized into topics includ-
ing resource allocation/task scheduling [8], [9], pricing [10],
[11] and workload factoring/outsourcing [2], [12], [13]. Our
research belongs to the last category. There have been a few
works on optimizing cloud outsourcing. In [12], the authors
aim at maximizing utilization of internal data center, minimiz-
ing cost of running outsourced tasks, while maintaining service
quality. In [13], workload factoring is considered in combina-
tion with the task scheduling problem within a private cloud.
These works neglect the interrelated outsourcing behaviors
among different secondary clouds. In [2] the authors study the
workload factoring among users of the same cloud provider. A
non-cooperative game is formulated where cloud users make
strategic decisions on workload factoring. However, they do
not consider cooperation among the cloud providers.

Competition and cooperation among different cloud
providers have been independently studied in other economic
aspects of cloud computing. In [14], price competition is
considered in the setting of multiple cloud providers. Instead of
studying the competition among cloud providers, in [15], the
competition among the cloud users is investigated. These two
works focus on competition among cloud providers or users,
but they ignore their potential cooperation. Cooperation among
clouds is studied by applying cooperative game theory. In [16]
the resource and revenue sharing problem within a horizontal
cloud federation is formulated as a stochastic program. In [17],
a coalition game based resource allocation and revenue sharing
scheme is proposed. The stable coalition structure is obtained
with the merge-split algorithm. The authors in [18] introduce
an MILP-based formulation of the energy-aware resource
allocation within a coalition, which aims at minimizing energy
cost of a coalition. However, these works only study the
cooperative behavior among cloud providers.

Game theory has been extensively employed to analyze
cooperation and competition in other forms of networks.
In [19], the authors study the coalition formation game among
small cell base stations for joint beamforming in cell networks.
An overlapping coalition formation game model is proposed
in [20] to study the cooperation among secondary users in
cognitive radio networks, while in another work [21], the
coalition formation among primary users is studied. In [22],
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TABLE I: List of Notations

Symbol | Definition 5° penalty rate of secondary clouds
Z the set of primary clouds C a coalition among secondary clouds
cf capacity of primary cloud ¢ & delay function of coalition C,
r? total number of requests received by primary cloud % C the set of all possible coalitions among secondary clouds
pf price per request charged by primary cloud ¢ c(C) capacity of coalition C'
Bf penalty rate of primary cloud 7 r(C) total number of requests received by coalition C'
T; delay function of primary cloud ¢ ™ a coalition structure among secondary clouds
J the set of secondary clouds II the set of all possible coalition structures among secondary clouds
('; capacity of secondary cloud j Zki number of requests outsourced to primary cloud ¢ by coalition C',
rj number of requests received by secondary cloud j Z) request strategy of coalition C',
p‘; price per request charged by secondary cloud j z request strategy profile of all coalitions

the authors model the cooperation of the small-scale electricity
suppliers and the end users as a coalition game. In [23], the
spectrum sharing among wireless users in a wireless network is
modelled as a non-cooperative game. The authors in [24] study
a non-cooperative resource allocation game among the device-
to-device users in cell networks. In [25] a non-cooperative
spectrum load balancing game among the secondary users is
proposed in a cognitive radio network. These works mainly
focus on resource contention among different entities.

To the best of our knowledge, no previous work has
analyzed interrelated competition and cooperation among a
same group of entities in cloud networks or other forms of
networks. We aim at filling the gap.

III. CLOUD NETWORK SYSTEM

In this section, we first introduce the secondary clouds and
horizontal federation. We then describe the primary clouds and
vertical federation. Last, we define the coalition values of the
horizontal federations.

A. Secondary Cloud and Horizontal Federation

We consider a set of secondary clouds denoted as J =
{1,2,...,7,...,]|J|}. Each secondary cloud j has a pool of
computing resources. Each secondary cloud j is characterized
by three parameters: the number of available resources (capac-
ity) ¢j, the number of requests 75 from its end users and the
per unit utility p it gets for processing a unit user request.”
We denote a horizontal federation, or coalition of a subset of
secondary clouds as C' C 7. Once a coalition C' is formed, the
resources and requests of its members are aggregated: ¢(C) =
Yjec¢; and r(C) = > . or;. A partition of secondary
clouds, or a coalition structure 1 = {C1,...,Ck,...,Cpn},
consists of different coalitions. We denote II as the set of all
coalition structures. Following [18] and [16], we refine that
a partition 7 is exhaustive and disjoint: Uj* ,C, = J, and
Cr N Cy =0 (for any Cy, Cys € 7 such that Cy, # Cy/).

B. Primary Cloud and Vertical Federation

As shown in Fig. 1, instead of processing all the re-
quests with the federated resource pool, a horizontal fed-
eration may also outsource requests to primary clouds via
vertical federation. We denote the set of primary clouds
as T = {1,2,...,4,...,|Z|}. Similarly, each primary cloud
i is characterized by its capacity ¢/, number of requests

2We assume 15 is predictable and refer to [26] as an example of demand
prediction. For ease of analysis, we consider only one type of computing
resource, as is the case in [2]. Throughout the paper, the superscript p means
“primary”, while s means “secondary”.

r? and unit price p?. Denote the number of requests from
coalition C} to primary cloud i as zg;, the total number of
requests received by primary cloud i is 77 = ch er 2ki- The
request strategy of coalition C; is denoted as a vector z; =
(Zh1y - ey Zhiy v e s zkm}Tﬁ and the request strategy profile
associated with a coalition structure 7 = {C1,Cy,...,Cp}
is a matrix z = (21,29, ..., %m).

C. Processing Time, Delay and Coalition Value Function

Due to cloud virtualization technology, a request actually
runs on a virtual machine (VM) instead of a physical machine.
For example, c¢ resources can host » VMs, while each VM
takes up  resources. By default, we assume that each request
runs on one VM?, and if one VM takes up a unit resource,
its processing time is a unit period. As a result, when r
requests run on c resources, the processing time of each
request is r/c. 5 As is noticed, when r > ¢, it causes a
“congestion” effect and delay of processing. According to the
service level agreement [29], a cloud provider bears a penalty
if the processing time exceeds a “deadline”. By default, we
set the deadline of each request as a unit time period®. For

primary cloud i, given the total number of requests r! and
capacity ¢!, its delay of processing time is
7i(z) =710/ — 1. (1)

Similarly, the delay function of a coalition Cj, is denoted as
Gula) = ") e
c(Ck)

where 7(Cy) — >, o7 2k is the number of requests processed
in-house. Note that when capacity is larger than the total

-1, 2

3Note that this formulation is a generalization of “vendor lock-in”, which
means that a secondary cloud can outsource requests to only one primary
cloud. Nonetheless, our formulation can be reduced to the vendor lock-in
case by simply setting the number of outsourced requests to only one primary
cloud as non-zero.

“Different request sizes can be treated as a large request being divided into
smaller unit ones.

Swe refer to [2] for a detailed discussion of processing time. Note that we
do not consider requests being dropped by cloud providers. In practice, the
rate of dropping a request is very low — for example, according to the service
level agreement of Amazon EC2 [27] and Microsoft Azure [28], the rate of
dropping a request is less than 0.05%, which is negligible.

6Requests with longer deadlines can be treated as several separate “virtual”
requests spanning over multiple time periods. For example, if a request with
a deadline of 5 unit time is received at a time ¢, we treat it as 5 separate
virtual requests received in 5 consecutive time periods from ¢ to ¢ 4 4. For
each virtual request, it has a deadline of one unit time. While in the current
time ¢, only the first among the 5 virtual requests is taken into account, and
the rest 4 requests are counted as requests in future time periods.
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number of requests, the delay is negative, as the requests are
processed before the deadline.

We denote the penalty function of a primary cloud ¢ as
fP(7:). For ease of analysis, we assume all secondary clouds
have a same penalty function f°. Therefore, the penalty of
coalition C} is f°(&;). However, our formulation can be
extended to different penalty rates’. Accordingly, we define
the value function v(Cy; ; z) of coalition Cj, € 7 with request
Sstrategy z as:

v(Cr;m52) = ZjeCk pir; —Ziezpfzki _(Zjeck rj
_Ziezzki)fs(fk(z)) - Ziel zki(f° (7i(2)) = f{ (1i(2))),

where the first term on the right hand side is the utility of
processing requests from the end users. The second term is
the payment to the primary clouds. The last two terms indicate
the delay penalty for the requests processed in-house and in
primary clouds, respectively. Note that for the case of negative
delay, i.e., the request is finished before the deadline, the
penalty can be viewed as a “bonus”.

3)

IV. COALITION FORMATION AND WORKLOAD FACTORING
OF SECONDARY CLOUDS

In this section, we analyze the interrelated workload factor-
ing and coalition formation among the secondary clouds. As
an example, we look at the two horizontal cloud federations in
Fig. 1. First, the workload factoring among different horizontal
federations is interdependent. For example, if Federation 1
reduces its outsourced request to the primary cloud, Federation
2 will have an incentive to increase its outsourced requests,
since the processing time in the primary cloud is shorter®.
Second, the workload factoring and the formation of coalition
structures are interdependent. For example, if the two clouds
in Federation 2 decide not to cooperate, they may need more
resources and the total number of outsourced requests will
increase, which further impacts the outsourcing strategy of
Federation 1. On the other hand, the outsourcing strategy of
Federation 1 also influences whether the rest of the clouds will
cooperate. For example, if Federation 1 submits fewer requests
to the primary cloud, the processing time in the primary cloud
is shorter. In this case, the two clouds in Federation 2 will tend
to submit more requests to the primary cloud, and it is less
beneficial for them to cooperate.

Due to the above two complicated interrelations, we decom-
pose the analysis into two steps, which is shown in Fig. 2. In
the first step, we consider a fixed coalition structure and a
workload factoring game. Next, we study the coalition forma-
tion among the secondary clouds and use a least pessimistic
core to characterize the most stable outcome. Based on the
analysis, we formulate the computation of the least pessimistic
core as a bilevel optimization problem.

"When different secondary clouds have different penalty functions, they
will have an incentive to allocate more requests to the clouds with smaller
penalties. We can extend our formulation by incorporating a resource alloca-
tion subscheme among the clouds [8], [9].

8Throughout this paper, we look at small and medium scale of cloud
networks, where one secondary cloud’s request processing time in the primary
cloud is impacted by the other secondary clouds, as is the case studied in [2].

Fix a Resources an d Workload
o requests aggregated -
Step 1 coalition —————————> Factoring
structure Game

Unique Pure Strategy
Nash equilibrium
Coalition Formation Game
(with externalities)

Least pessimistic core

Step 2

Fig. 2: Two steps to analyze the VHCF network.

A. Workload Factoring Game (WFG) for a Fixed Coalition
Structure

Definition 1. For a fixed coalition structure ©, a WFG is
a non-cooperative game, where the players are the different
coalitions, the strategy is the number of requests outsourced
to primary clouds, and the utility of a player is defined in
Eq.(3).

For non-cooperative games, Nash equilibrium (NE) is a natural
solution concept, where each player is not willing to unilat-
erally change its strategy. Given coalition structure 7, the NE
strategy zp of Cy, is:

N N
z; € argmaxy,, ca, V(Cx;m; 28,22 ;),VCr €T,  (4)

where z? . denotes the equilibrium strategies of all the other
coalitions. Ay is the feasible region of z:

Zki > O,VZ € I) (5)
> g 2ki S7(C). (©)

The entire feasible solution space is A = x}* ; Ay, where x is
a Cartesian product. Eq.(5) means that the number of requests
from coalition C} to each primary cloud 7 is non-negative,
while Eq.(6) requires that the sum of requests outsourced by
each coalition C}, cannot exceed its total number of requests’.

B. Coalition Formation Game with Externalities (CFG-e)

So far, we have addressed the second question in Section I,
i.e., an optimal workload factoring strategy in a competitive
setting is an NE strategy. After we obtain the workload
factoring strategy for each coalition structure with Eq.(4), each
coalition’s utility can be calculated by Eq.(3). To simplify
notation, we omit z”V, and denote the NE value of a coalition
Cy, € mas v(Cy; ). As is noticed, the coalition value depends
on the specific coalition structure. In the following, we answer
the first question in Section I by proposing a coalition game
model.

Definition 2. CFG-e is a coalition game played by secondary
clouds, where coalition value depends on the specific coalition
structure, i.e., it has externality effect. The outcome of a coali-
tion game is a tuple (7,X), where X = (T1,...,%j,...,T|7])
denotes the payoff of each secondary cloud.

Since the secondary clouds are self-interested, we need to
consider a stable outcome, i.e., no subset of players can get

9We leave the description of solution algorithms of the WFG and the
following CFG-e in Section V.
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a higher payoff by deviating from the current outcome and
forming a new coalition. However, for a CFG-e, when the
players want to deviate, they have to consider the response
of the residual players (i.e., the rest of the players). There
has been extensive discussion on the stability in a CFG-e. We
refer to Koczy et al. [30] for a review. In this paper, we use the
commonly adopted pessimistic core'® as the solution concept,
which means that if a group of players want to deviate, they
are pessimistic about their potential coalition value [32].

Definition 3. The pessimistic value of a coalition C in a CFG-
e is the lowest possible value in all coalition structures 1o
which contain C: 5(C) = mingen, v(C, 7).

Consider an outcome (7,x), where z; > 0,Vj € 7, it is
in the pessimistic core if 3} ,.ox; > 9(C), VC € C, and
> jecj = v(C,m), VC € m. The two constraints ensure
that 1) the sum of payoff for each subset of players is no
smaller than the pessimistic value of their intended coalition
and 2) the sum of payoff of all the coalition members is equal
to the coalition value. However, the pessimistic core can be
empty, or there can be multiple cores. Thus we define a “least
pessimistic core” to denote the set of most stable outcomes
for a CFG-e.

Definition 4. The least pessimistic core of a CFG-e is the
outcome (m,x) with the smallest € satisfying

Zjec xj > mingen, v(C,m) —e, VC €C  (7)

Dot =v(Cm), VO e ®)
xj > 0,Y5€J ©)

When ¢ > 0, a set of players prefer to deviate when the loss
of deviation is no larger than €, while ¢ < 0 means that they
prefer to stay at the current outcome even if they can get a
reward of —¢ if they deviate. Therefore, the outcome with the
smallest ¢ is the most stable. Note that in Eq.(7), to obtain the
pessimistic value of a coalition C, we need to go through all
the coalition structures that contain C, which is impractical
when the scale of the problem is large. Before we finally
formulate the bilevel optimization problem to obtain the least
pessimistic core and the corresponding outcome, we simplify
Eq.(7) with two important properties of the proposed CFG-e,
namely, superadditivity and positive externality.

Lemma 1. When cooperation incurs no cost, the proposed
CFG-e is superadditive, i.e., for any two coalitions Cy, Cy,
there is v(C, U Cyr; {Cr U Clr } Um,.) > v(Cy; {Ck, Crr } U
) + v(Cxr; {Ck, Crr } Ur,.), where m, denotes a partition of
the residuals J\(CUCy). Coalition structure {C,UC} }Um,.
means that Cy, and Cy, cooperate, and {Cy,, Cys } U, means
that they do no cooperate.

Proof. The proof is in two phases. First, we prove that for
two coalitions C} and C}s, if the total number of their
outsourced requests after cooperation equals the sum of out-

10We use core instead of Shapley value [31] because to incentivize the
self-interested clouds, stability is more desired than fairness.

Our framework can be easily extended to the optimistic core [30] by
defining an optimistic value #(C) = maxrem, v(C, 7).

sourced requests before cooperation, their total delay is no
larger after cooperation. Second, we prove that, if the total
number outsourced requests can be changed, the total delay
(utility) is still no larger (smaller) after cooperation.

1) Total number of outsourced requests do not change. We
first assume that after C), and C}, form a new coalition, the
total number of outsourced requests equals the sum of their
outsourced requests before cooperation. In this case, only the
delay penalty (the third term in Eq.(3)) in the coalition value
function is changed. Denote the number of requests processed
in-house as 7;,(Cx) = 7(Ck) — > ;7 2ri and 74, (Crr) =
7(Cyr) — > ic7 #kri>» We can obtain the total delay of Cj, and
C} under two cases: 1) C and Cj cooperate and form a new
coalition; 2) C% and C}s do not cooperate. By subtracting the
total delay of these two cases, we have:

Tin(ck) Tin<Ck/) )
rin(Ck)( C(Ck) - 1) + Tin(ck’)( C(Ck/) - 1) - (7in(ck) + rin(ck’))
(Tin(Ck) +rin(Cr) o\ _ Ti(Cr) | 12 (Cr) _ (rin(Ch) +71in(Cir))®
C(Ck) + C(C}c/) (J(Ck) (J(Ck/) (,(Ck) + C(Ck/)

_ rin(CR)e(Crr) = rin(Cr)e(Cr)* 0

e(Cr)e(Crr)(e(Cr) +e(Crr))  —
The equality holds (i.e., the total delays of the above two cases
are equal) when the processing rates of coalitions C and C/
are the same (i.e., T;’Z(Ci’)‘) = ”c"éif)’)). Therefore, the total
delay (also for unit delay, since the total number of requests
is the same whether the two coalitions cooperate or not) is
always no larger when clouds cooperate than the total delay
when they do not cooperate.

2) Total number of outsourced requests can be changed.
If the new coalition Cj U Cys can change the number of
outsourced requests, it can at least maintain the current request
strategy (or change it only when it is beneficial). As a result,
the total delay of the merged new coalition is still always
no larger than the total delay of the two separate coalitions.
Correspondingly, the utility of the merged new coalition is
always no smaller than the sum of utility of Cy and Cj/ if
these two coalitions do not cooperate. O

Lemma 2. When cooperation incurs no cost, the pro-
posed CFG-e has positive externality, i.e., for any coalitions
Cy,Cy,Crpn € J, and a partition w, of the residuals
J\ (Cx U Cyr U Cyrr), the value of Cy, is always no smaller
when Cys and Cyr cooperate: v(Cy; {Cl, Crr UCy» YUT,) >
’U(Ck; {Ck, Chr,s Ck//} U 71'7-).

Proof Sketch. At the NE strategy of a coalition, if the coalition
increases its outsourced requests by a very small amount (it
brings no change of the processing time in either the coalition
or the primary clouds), the benefit from the decrease of delay
penalty in-house equals the payment to the primary clouds plus
the delay penalty from the primary clouds. According to the
proof of Lemma 1, when the new coalition C UC maintains
its request strategy, its unit delay never increases. Thus the new
coalition has an incentive to decrease its outsourced request so
that the delay in-house increases, the delay in primary clouds
decreases, and the equilibrium is reached again. When the
delay in primary clouds decreases, the delay penalty of other
coalitions decreases, and their utility increases. O
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Theorem 1. When cooperation incurs no cost, the grand
coalition is the most stable coalition structure.

Proof Sketch. When cooperation incurs no cost, superaddi-
tivity implies that cooperation is beneficial to the coalition
members, while positive externality implies that cooperation
is beneficial to the clouds outside the coalition. Thus the grand
coalition will always be the most stable coalition structure. [

However, forming coalitions incurs additional cost, such
as extra hypervisor machines, administration cost and data
transmission cost. Therefore, we add a cost term to the
coalition value function:

V' (Cy, ) = v(Ck, m) — C“(Ck). (10)

Since the coalition cost is generated in the intra communi-
cation within a coalition, we assume it depends only on the
coalition itself, i.e., it does not have externality effect.

Theorem 2. When coalition cost has no externality effect, the
proposed CFG-e has positive externalities.

Proof Sketch. This is a direct extension of Lemma 2. O

According to Theorem 2, the pessimistic value of a coalition
C is associated with the coalition structure 7 where all residual
players form singleton coalitions, i.e., each coalition has only
one member. With this property, the pessimistic value of all
coalitions can be obtained directly, which greatly simplifies
Eq.(7). Combining this property with Egs.(4), (7)-(9), the
solution (i.e., the most stable outcome) of this CFG-e is
expressed with the following bilevel optimization problem:

ming x ,nv € (11D

s.t. E:Eijzv@U—s,w7ec (12)
Z]‘eck z; =0 (Cg;m;2V), VO, €7 (13)

r;j >0,Vj€J (14)

rell (15)

ZQZE argmaxyg, ¢ 4,0(Cl; m; zk.,zjjk.),VCk € w(16)

Eqgs.(11)-(15) describe the upper level problem of comput-
ing the pessimistic core, while Eq.(16) denotes the lower level
problem of computing an NE strategy for a fixed coalition
structure 7. Eqs.(11)-(14) compute the least £ value for a fixed
7. Eq.(15) denotes the feasible coalition structure space, which
will be introduced in detail in Section V.

V. COMPUTING LEAST PESSIMISTIC CORE

Due to the two-level structure and involved form of coalition
value functions, there is no existing method to solve the above
optimization problem directly. In this section, we decompose
the bilevel problem and design algorithms for both levels.
In the lower level, we propose two algorithms CLONE and
CLOSE. CLONE employs the constraint generation method,
and is a generic algorithm. CLOSE is a more efficient al-
gorithm which employs several structural properties of the
lower level problem, but is limited to concave coalition value
functions. In the upper level, we propose Brute-Force and
CUBE. CUBE implements a binary search method with two
heuristic rules and is more efficient than Brute-Force.

A. Solving the Lower Level WFG

Given a coalition structure 7, the lower level problem in
Eq.(16) is a feasibility problem:

max,~ 0 (17)
v(Cy; ;2N ) >0(Ch; 75 21, 20, ), Vag, € Ay, Crem (18)
zV e A (19)

The General Algorithm CLONE: Unfortunately, the number
of constraints in Eq.(18) is infinite since z; € Ay, is a continu-
ous parameter. We use the constraint generation method [33] to
deal with the infinite constraint space. The basic idea is to start
with solving a relaxation of the original problem by sampling
a small subset of constraints and then use a sub-routine to
find violated constraints, and gradually expand the set by
adding the violated constraints to the relaxed problem until
no violated constraint is found. = CLONE (Compute Lower

Algorithm 1: CLONE

1 Sample a subset 2 of constraints from A,

2 repeat

3 z" « solution of master problem;

4 z;"" < solution of slave problem,

5 DfP* « objective of slave problem;

6 for Ci, € m do

7 L if Df,;’pt > e, then add zzpt to Q;

s until Df,;’pt <eg, VO, € m;
9 return zj ,v(Cy; ;2" ), VC), € 7.

level Optimization with coNstraint gEneration), as shown in
Algorithm 1, begins by randomly sampling a finite subset
Q. of constraints from A, for each coalition C). A relaxed
master problem is solved which is in the same form as the
original feasibility problem in Eqs.(17)-(19) and returns the
feasible solution z*. The only difference is that the master
problem replaces Ay, with 0 in Eq.(18). Constraint generation
is then applied to find the “mostly violated” constraint for each
coalition Cy, as is shown in the following slave problem:

maxg, c 4, Dfe=0(Cr;m; 2k, 2", )—0(Cr;m2),2% ). (20)

The most violated constraint refers to the parameter z; that
maximizes the difference between the utility of coalition Cj
computed by z; and by the optimal solution z; of the master
problem. The solutions of the slave problem return the set of
mostly violated constraints, which will be added to the set of
constraints ) of the master problem. The process iterates until
convergence, i.e., the optimal value Df.” " of the slave problem
corresponding to each coalition C); € 7 is no larger than a
small threshold ej. This threshold is set as the multiplication
of the coalition’s gross revenue Zjeck rip; and a small
ratio e (we will evaluate the runtime of the algorithm with
different scales of e in Section VI). In this way, we decompose
the original optimization problem into a series of master-
slave non-linear optimization problems, which have a finite
number of constraints and can be solved directly by existing
optimization solvers like KNITRO.

The Faster Algorithm CLOSE: With CLONE, we can solve
the lower level optimization with any form of coalition value
functions. However, it solves a series of non-linear master-
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slave problems, and thus becomes rather slow for large scale
settings'?. In the following, we first demonstrate that under the
commonly employed linear delay penalty rules [34]-[36] (i.e.,
fP(ri) = BU7i, f*(6x) = By, where 7 and B are penalty
rates for primary cloud ¢ and secondary clouds, resp.), the
value function of each coalition CY is strictly concave w.r.t.
its request strategy vector zj. We then use this property to
establish the existence and uniqueness of the NE. Based on the
theoretical analysis, we introduce a more efficient algorithm
to solve the lower level problem.

Algorithm 2: CLOSE

1 z* « solution of Eq.(21);

2 for C € m do

3 for : € 7 do

4 if z;;; < O then

5 L Replace the corresponding equation in Eq.(21) by
2 = 0;

6 z" < Solution of the new equation system;
7 return zj ,v(Cy; ;2" ), YC), € .

Lemma 3. With linear penalty functions fF(r;) = p'n,
f5(&) = B%¢, the coalition value function defined in Eq.(3)
is strictly concave w.r.t. its request strategy zr..

° S .S s 7(Ch
Proof. Let Ay=r5. Di=Y sec, 1515 —B7r(Ci) (e} —1).
vy, = v(Ck;m;2z), we rewrite the value function in Eq.(3)
asivy, = —Ar(Diez 20)? = Liez (072 Yo enties) +
(%(SA) — B ez DR o1 P 2k T2he Hessian matrix
of —vy is defined as Hy(—wvg) %, Ll e T
Substitute v, with the above equation, we have: Hyy (—vg) =

{ 2(Ak + (ZTZ% e )a =1, Let B = B°—B7
c

—-. For any up-
l

1
244, 141
per left [ X! matrix, where l = 1,...,4,...,|Z|, its determinant
A+ By Ay Ak AIL+Bl Ap e A
| Ay Ag+B, - A ;| B B 0 0
detHp=2' T TRTEE TR =l 00 By :
A A At By “Bi 0 - 0 B
A+ Bir AT, B A Ay
. 0 B, 0 - 0 i .
=2 0 By - --- = (Ag + By + Ay, 21:2 By /B)._, B,
e e 0
0 0 - 0 B

Since Ay > 0,B; > 0, then detH; > O,Vi~ € 7, ie., the
Hessian matrix of —vy, w.r.t. zj, is positive definite everywhere.
Thus —wvy, is strictly convex w.r.t. z, while v(Cl;m;zg) is
strictly concave. O

The strict concavity of coalition function is intuitive: when
the number of outsourced requests is small, the coalition value
increases with the outsouced requests because the in-house
overload is relieved. When the number of outsourced requests
is too large, the coalition value begins to decrease because the
benefit of relieving in-house overload is smaller than the cost
of outsourcing.

I2CLONE is still meaningful because when coalitions’ value functions are
not strictly concave, only CLONE can be applied.

Theorem 3. (Existence and uniqueness of equilibrium) With
linear delay penalty, the pure strategy Nash equilibrium for the
WFG given a coalition structure T is non-empty and unique.

Proof. For each coalition C}; as a player of the WFG, given
the strategies z_, of the other players, it will select the optimal
strategy zj that maximizes its value, which is a mapping
ok + A_ — Ay defined as z = ¢p(z_x). According to
Lemma 3, the value function v(C}; 7;z) of each coalition Cj,
is strictly concave w.r.t. z;. Combined with the compactness
(closed and bounded) of both the domain A_j and the range
Ay, we have that the mapping ¢ (z_) is non-empty and u-
nique. Also, the compactness of .A_, implies that the mapping
or + A_j, = Ay is upper hemicontinuous. The non-emptiness,
uniqueness (point to point), and upper hemicontinuity are
naturally inherited by the mapping ¢ : A — A defined as
@¢(z) = X7 ¢r(z_1). Moreover, since the vertices of A defined
in Egs.(5)-(6) are affinely independent, A is a simplex (and
closed). Applying Kakutani’s fixed point theorem [37], there
exists a unique z" € A such that z = ¢(z). Thus, the pure
strategy NE of our problem is non-empty and unique. O

Based on Theorem 3, we design a more efficient algorithm for
the lower level problem.

Theorem 4. When the feasible region A in Eq.(19) is relaxed
to R™*", the lower level optimization problem is equivalent
to solving the following linear equation system:

ov(Cy;7;2)

=0
0z ’

VieZ, VCjem. (21
Proof. When the feasible region is relaxed to z € R™*",
then the computation of the NE for a fixed coalition structure
7 is equivalent to: max,, v(Cy;m;2z),VC) € 7. According to
Lemma 3, when the request strategy z_j, of the other coalitions
is fixed, the value function of each coalition is strictly concave
w.rt. z;. Employing the first order condition, for coalition
C}, its unique optimal strategy vector can be computed as:
gzi:i = 0,Vi € Z. Considering all the coalitions, we obtain
Eq.(21). O

Unfortunately, the solution of Eq.(21) may not always lie
in the feasible region in Eqs.(5)-(6).

Theorem 5. The solution of Eq.(21) is guaranteed to satisfy
the feasibility constraints in Eq.(6).

Proof. With Theorem 4, for each coalition Cy € i,

we compute its NE strategy vector with %(T(Ck) -

Sierami) = T oy e + ) — ) = Bl = 0.
Extract 7(Cr) — > ;c7 2ki> We have 7(Cy) — > icq2pi =
cégz:) (ﬁsc—Pﬂf e, en Zkri+2ki)+pt ). Practically, the price of
primary clouds is much lower than that of secondary clouds.
Thus, we assume their penalty rate is also lower than that of
secondary clouds, i.e., 8° > ﬁf . Moreover, we have z; > 0,

and thus ), 7 z; < 7(Cy) is satisfied. O

Theorem 5 implies that the feasibility constraint in Eq.(6)
can be omitted. In the next, we further discuss the feasibility
constraint in Eq.(5). As we know, each partial differential
equation in Eq.(21) can be viewed as a best response curve
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Nash equilibrium
(Solution of Eq. (25))

(b) When the solution of Eq.(21) lies

(a) When the solution of Eq.(21) lies outside A.

inside \A.
Fig. 3: Two cases of NE. x and y axes denote the request
strategy of coalitions Cy and C5, resp. The two lines L;
and Lo denote the best responses curves of coalitions C4
and Cy when the feasible region A4 is relaxed, while the
dashed line segments are outside the feasible region. Following
Theorem 6, they are replaced by the dotted line segments.

of a coalition given the strategies of other coalitions (Fig. 3).
The intersection of these curves is the solution of Eq.(21).
However, for each curve, there is a segment that lies outside
the feasible region (the dashed line segments in Fig. 3).

Theorem 6. For the best response curves of a coalition
described in Eq.(21), the segments that lie outside the feasible
region (i.e., zi; < 0) should be replaced by the curve zj; = 0.

Proof. According to the definition of strict concavity, for the
best response curve where zi; < 0, we have v(Cy;m; 2, =
O,Zk.,_i,z_k) > )\’U(Ck;ﬂ;zki < O,Zk7_i,Z_k) + (1 —
MNv(Cr; s zp,; > 0,254, 21), where z, _; is the request
strategy to primary clouds except i, zj; is on the best response
curve, z; > 0 is any value in the feasible region .A. Since
z; = 0 is between zy,; and 2}, then 0 < A < 1. Also we have
v(Crm 21 = 0,28, —,2_1) < V(Ch; ;28 < 0,25, —i,Z_).
Therefore, v(Cy;m; 2y, = 0,25 —,2_1) > v(Cy;m;2;,; >
0,2k _i,Z_j) holds for any z;ﬂ > 0 and the best response
curve should be z;; = 0. O]

Based on the properties above, we propose CLOSE (Com-
pute Lower level Optimization with Strictly concavE value
function) to solve the lower level problem in Eqgs.(17)-(19), as
shown in Algorithm 2.

B. Solving the Upper Level CFG-e

Since the coalition value function is in an implicit form
which depends on the solution of the lower level problem, the
upper level problem cannot be formulated as a single integer-
linear program. Instead, a separate linear program (Eqgs.(11)-
(14)) has to be solved to find the least core of each coalition
structure. A natural idea is to do a brute-force search within
II to find the least pessimistic core.

The Exact Algorithm Brute-Force: We first introduce a
coalition structure graph.

Definition 5. A coalition structure graph (CSG) 11 is a graph
with | J | levels, where each node denotes a coalition structure,
and each level 11, K = 1,2,...,|J| contains the coalition
structures that have K coalitions. Fig. 4 shows an example
CSG with 3 secondary clouds.

Algorithm 3: Brute-Force

1e"« M;

2 for Ilx, K =1:|J| do

3 ex +— M,

4 for node ™ € llg do

5 Solve Eq.(16) for m, get coalition values;
6 €x < solution of Eqgs.(11)-(14);

7 if e > e, then €% < e

8 if £* > &% then &* < ¢}

9 return *

{1}.{2}.{3}

[ {1,2},{3} ]

[ {1},{2,3} ]

Fig. 4: A CSG with 3 secondary clouds. The bottom node
(level 1) is the grand coalition, the top node (level 3) has 3
singleton coalitions, and all nodes in level 2 have 2 coalitions.

{1.3}.{2} ]

A brute-force searching algorithm, as shown in Algorithm 3,

traverses all the nodes from bottom-up, level by level. For each
node, a linear program (Eqs.(11)-(14)) is called as a subroutine
to obtain the least core value ¢, for the node. €* and €%
respectively denote the least core value for II and in the level
IIx, which are initialized as a very large value M.
The Heuristic Algorithm CUBE: Note that the number
of coalition structures is a Bell number w.r.t. the number
of secondary clouds n, which belongs to one of the most
notorious large numbers in the combinatorial mathematics and
is of order O(n™) and w(n™/?) [38]. As a result, it is rather
inefficient to do a brute-force search within the exponentially
large solution space. In fact, finding the least core for large
scale coalition games with externalities, which belongs to
hardest class of combinatorial optimization problems, has long
been an open problem. Although there have been attempts
to solve much simpler problems [39], [40], no attempts have
been made to obtain the least core for large scale coalition
games with externalities. In this paper, we design a binary
search algorithm, CUBE, to solve the upper level problem,
which implements two heuristic pruning rules based on the
properties of the CFG-e.

Heuristic Rule 1: When €%, < €%, search in levels closer
to Ilg. €} < €} implies that the nodes in IIx tend to be
more stable than those in ITx/. Thus we put more search effort
to the levels closer to 1.

Heuristic Rule 2: For a coalition C' €
of its request and capacity %

r(C) Scexm(O) 13 . o
(0 > 0 x S0 prune this node w. The intuition

behind this heuristic rule is that when a coalition C has
redundant resources (r(g) < 1) or has too low available

C) > 0 x W) the coalition value is

expected to be low and thus the coalition will not form. If any

m, if the ratio

satisfies Z(—gg < 1 or

131t reveals the average request-capacity ratio of all secondary clouds.
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such coalition C exists, a coalition structure which contains
C cannot exist either. With smaller values of 6, the pruning is
more aggressive, while sacrificing optimality.

Based on the above two rules, we propose CUBE (Compute
Upper level problem with Binary sEearch). As shown in
Algorithm 4, the algorithm iteratively searches within the
smallest level IIx to the largest level IIx/, which are ini-
tialized as 1 and |J|, respectively. For K < K’, meaning
that there are more than 2 levels of nodes, CUBE computes
the least core €}, €}, of these two levels (Lines 4-11). In
Lines 7-8, it skips any node which satisfies heuristic rule 2.
If €}, < €%, according to heuristic rule I, the largest level
becomes K’ = [(K + K')/2], which means that half of the
levels closer to level I1x/ are pruned. Else, the smallest level
is updated as K « [(K + K')/2].

Algorithm 4: CUBE

1"+ M; K+ 1,K' « |J|;
2 while K < K’ do

3 e «— M, ey < M;

4 for node ™ € Il do

5 for C € 7 do

6 if Z§g§ >1&& Zég; < T, then

7 Solve Eq.(16) for m, get coalition values;
8 ex < solution of Eqgs.(11)-(14);

9 if e > e, then €% < &r;

10 Repeat Lines 5-10 for I/, get e%/;

11 if ¢ < &} then K’ + [(K + K')/2];

12 else K «+ [(K + K')/2];

13 return £;

VI. EXPERIMENTAL RESULTS

In this section, we 1) show through a simple example
the interrelated workload factoring and coalition formation,
and the general process of obtaining the least pessimistic
core; 2) evaluate superadditivity and externality; 3) evaluate
coalition formation under different VHCF scenarios; 4) show
the improvement of total utility by using the VHCF network;
5) evaluate the performance of different algorithms.

A. Obtaining Least Pessimistic Core: A Simple Scenario

To show the interrelated workload factoring and coalition
formation, and the general process of obtaining the least
pessimistic core, we first study a simple scenario of 1 primary
cloud and 3 secondary clouds. Note that in this subsection, we
do not intend to evaluate how different parameters (e.g., the
price, penalty of secondary clouds, coalition cost, demand and
supply sizes. We refer to Table II for a summary of parameters
that are mentioned in the experimental settings.) influence
the coalition formation results among the secondary clouds
(which will be evaluated in Section VI-C). As a result, in this
subsection, we just assign arbitrary values to these parameters,
as described in the following.

By default, we set the price of the primary cloud as 1.
Correspondingly, we set the price vector of the 3 secondary
clouds as (2,1.98,2.01) — approximately twice as that of
the primary cloud’s. The prices of the secondary clouds are
set close because, to ensure interoperability among different

TABLE II: Summary of parameters mentioned in the experi-
mental settings. We evaluate the influence of these parameter
values on coalition formation results in Section VI-C.

Parameter Description
pf price per request of primary cloud %
Cf capacity of primary cloud ¢
Bf penalty rate of primary cloud ¢
p'; price per request of secondary cloud j
c; capacity of secondary cloud j
r; number of requests of secondary cloud j
3B° penalty rate of secondary clouds
c° unit coalition cost
¥ coalition size impact factor

secondary clouds, the application service in these cooperating
clouds should be similar, while the prices of their service
should also be close. The capacity of the primary cloud is
set as 40. The capacity and request vectors of the 3 secondary
clouds are (40,50,60) and (60,40, 90), resp. Following the
line of research of [34]-[36], throughout this section, we adopt
the linear penalty rules. In this subsection, the penalty rates
of the primary clouds and secondary clouds are set as 57 = 1
and 8° = 2, resp. Note that when penalty rate equals price, it
means if processing delay is twice as much as the deadline,
the penalty for delay equals the price paid and the provider
gets no payment from the user.

Coalition cost is defined as!*: C°(Cy) = c°(|Ck| — 1),
where ¢ is the unit coalition cost. (|Cj| —1)7 is determined
by the coalition size |C}|. For example, when a coalition is a
singleton, there is no coalition cost. Whenever a new member
enters the coalition, it incurs additional coalition cost. v is
a factor which measures the extent to which coalition size
influences the coalition cost. Larger  values indicate larger
coalition size effect. We set v = 1 (i.e., coalition cost is linear
w.r.t. coalition size), c®® = 6 (i.e., when a new member joins
the coalition, an additional cost of 6 is produced).

First, we call CLONE/CLOSE to compute the NE strategies
and coalition values of different coalition structures, which are
shown in the 2"¢ and 3" columns of Table III. We can see
that the workload factoring and the coalition formation are
interdependent. For example, the request strategy of coalition
{1} is 29.4 when secondary clouds 2 and 3 cooperate, while
28.5 when they do not cooperate. Alternatively, it can be
viewed as the request strategy of {1} influences whether
secondary clouds 2 and 3 cooperate. We can also see that
the coalition value of a coalition depends on the coalition
structure, i.e., the externality effect, which will be studied in
detail in the next subsection.

After we obtain the coalition values for each coalition struc-
ture, we can get the pessimistic value of each coalition. For ex-
ample, the two coalition structures which contain coalition {1}
are {1},{2,3} and {1}, {2}, {3}. According to Definition 3,
the pessimistic value of {1} is the smaller one among the
two values 130.1 and 125.0. Therefore, the pessimistic value
of coalition {1} is ©({1}) = 125.0. In fact, this is the direct
result of Theorem 2, since in coalition structure {1}, {2}, {3},
both {2} and {3} are singleton coalitions. Similarly, we can
obtain the pessimistic value of all the coalitions in Table IV.

“Each secondary cloud will estimate the cost if it joins a coalition. The
detailed modelling of coalition cost is out of scope of this research.
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TABLE III: NE, coalition value and least pessimistic core (the outcome highlighted in yellow).

Coalition structure NE request Coalition value Least ¢ Payoff division
{1,2,3} 43.1 421.9 0 127.3, 119.2, 175.4
{1,2},{3} 23.1, 29.3 241.9, 181.2 1.1611 123.8, 118.1, 181.2
{1,3}, {2} 47.6, 1.2 296.7, 119.3 5.90571 | 127.2, 119.3, 169.5
{1},{2,3} 29.4, 23.3 130.1, 292.7 0.941181 | 130.1, 118.2, 174.5
{1}, {2}, {3} 28.5, 0, 28.0 | 125.0, 119.2, 175.4 2.3508 125.0, 119.2, 175.4
TABLE IV: Pessimistic value
Coalition {1} {2} {3} {1,2} | {1,3} | {2,3} | {1,2,3}
Pessimistic value | 125.0 | 119.2 | 175.4 | 241.9 | 296.7 | 292.7 421.9

Last, for each coalition structure, we call the linear program
in Eqs.(11)-(14) to compute the least € and the corresponding
payoff of each secondary cloud, as is shown in the last two
columns of Table III. We can see that only the least € of
the grand coalition is 0, which means that only the grand
coalition and its corresponding payoff division is in the least
pessimistic core (highlighted in yellow). Take another coalition
structure {1},{2,3} as an example, the payoff of secondary
cloud 2 is 118.2, while the pessimistic value of coalition {2} is
119.2 > 118.2. Therefore, secondary cloud 2 has an incentive
to deviate from the current outcome and form a singleton
coalition. Interestingly, although secondary cloud 1 gets the
highest payoff in this coalition structure, it is not stable due
to secondary clouds 2’s deviation.

B. Superadditivity and Externality

In this subsection, we show the superadditivity and exter-
nality of the CFG-e. We consider 4 secondary clouds and 1
primary cloud. Similarly, since we do not intend to evaluate
the influence of the parameter values in this subsection, we
assign arbitrary values for the parameters in this subsection.
The primary cloud’s capacity is set as 50. The penalty rates
of the primary and secondary clouds are set as in the above
subsection. The capacity, request and price vectors of the first
three secondary clouds are also set as in the above subsection.
The unit coalition cost c¢® is set as 0 so that cooperation
incurs no coalition cost. The capacity of secondary cloud 4
is set as 70. For different number of requests of secondary
cloud 4, we evaluate 4 coalition structures: 1){1,2},{3,4};
2)(L.2}. {3}, {4}: {1}, {2}, {3.4%: D1}, {2}. {3}, {4}.

In Fig. 5a, we show the values of coalitions {3,4}, {3}
and {4} when secondary clouds 1 and 2 cooperate or not. It
shows that for all the three coalitions, the coalition value is
always larger when secondary clouds 1 and 2 cooperate, which
is consistent with the positive externality. Furthermore, for a
certain cooperation status of secondary clouds 1 and 2, the
value of coalition {3, 4} is always larger than the sum of values
of coalitions {3} and {4}, which implies supperadditivity.
The same holds for Fig. 5b. In addition, we can see that
in Fig. 5a, the values of coalitions {4} and {3,4} increase
with the number of requests of secondary cloud 4. While
this observation is straightforward, we also notice that in
both Figs. 5a and 5b, the values of all the other coalitions
which do not contain secondary cloud 4 decrease. This is
because when the number of requests in secondary cloud 4
increases, it tends to outsource more requests to the primary
cloud, which leads to congestion in the primary cloud and
further deteriorates the task performance of other coalitions.

This phenomenon indicates that the externality is caused by
the resource contention in the primary cloud.

250 (3.4} with {1,2)
(3,4} with {1},{2

=3} with {1,2}
{3) with {1},{2}
{43 with {1,2}

* {4} with {1}.{2}

{1
{2} with (3,4}
-*- {2} with {3}.{4}

Coalition value
»
S
s
Coalition value

40 100 40 100

50 60 70 80 90 50 60 70 80 90
Number of requests of the 4th secondary cloud Number of requests of the 4th secondary cloud

(a) Secondary clouds 3 & 4 (b) Secondary clouds 1 & 2
Fig. 5: Superadditivity & externality

C. Coalition Formation Results under Different Cloud Net-
work Conditions

This subsection investigates several key factors that deter-
mine the coalition formation results. To approach the param-
eter values in real scenarios, in this subsection, we follow
the pricing schema of Amazon EC2 [41], and assume that
the clouds in the VHCF system use the t2.large VM in a
Linux/UNIX operating system, with a per hour price of 0.104
US dollars (i.e., for all primary clouds ¢ € Z, pf = 0.104).
We consider 2 primary clouds and 6 secondary clouds. Each
secondary cloud j’s capacity is randomized within [60, 100].
Its request is randomized within [¢f — 20, ¢!’ 4 60]. Its price is
randomized within [p*—0.05, p®40.05], where p® indicates the
overall price level of the secondary clouds and is randomized
within [0.15, 0.3].The price level is 1.5 to 3 times as much as
the price of the primary cloud. Considering that we have not
counted other costs such as labor, advertisement, and taxes,
this is a reasonable range according to the definition of a
“healthy operating profit margin” by Investopedia [42]. Each
primary cloud 4’s capacity is randomized within [40, 80]. The
penalty rate 5P of the primary clouds is randomized within
[0.08,0.12]. The penalty rate of the secondary clouds is set
as 3° = np°, where 7 denotes the ratio of penalty against the
price level and is randomized within [0.8,1.2] — by n = 1,
it means that if the processing time is twice as much as the
pre-contracted deadline, the penalty equals the price (which
means the user does not need to pay for the request). The
unit coalition cost ¢®® and the coalition size factor vy are
randomized within [0,1.2] and [1, 1.3], respectively.

In this set of experiments, our strategy is to step by step
vary the parameter value under evaluation, and randomize the
values of other parameters over the above specified range. For
each set of results in Fig. 6, we take the average over 30 trials.

We first evaluate the coalition formation results under dif-
ferent coalition cost. We set the unit cost from 0 to 1.5 with
a step of 0.3, and observe coalition formation with different
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coalition size factor . Fig. 6a shows the average number of
coalitions formed under different coalition cost, where smaller
number of coalitions means that the secondary clouds tend to
cooperate. The figure indicates that when the unit coalition
cost and the coalition size factor ~ increase, the number of
coalitions also increases. When coalition cost approaches 1.5,
cooperation is too costly to form. Thus all secondary clouds
tend to stay in singleton coalitions.

We then evaluate the coalition formation under different
price and penalty rates of the secondary clouds. We set price
level p® of the secondary clouds from 0.15 to 0.3 with
a step of 0.03, and evaluate the coalition formation with
different secondary clouds’ penalty rate 7. As is shown in
Fig. 6b, for a fixed 7, the increase of price will promote the
cooperation of the secondary clouds. This is because when the
price of the secondary clouds increases, the coalition cost is
less comparable with the profit. Therefore, cooperation will
generate more benefit. Meanwhile, for a fixed price, when
penalty rate increases, the secondary clouds tend to cooperate.
As is indicated in the proof of Lemma 2, cooperation can
always lead to no worse delay. Therefore, secondary clouds
tend to cooperate to reduce the high delay penalty.

To investigate how the demand and supply relation in-
fluences coalition formation, we vary the request scale and
capacity of the primary clouds. We define the request scale as
the total number of requests received by the secondary clouds
minus the total capacity of the secondary clouds. We set it
from 40 to 240 with a step of 40, and evaluate its effect on
coalition formation with different capacity scale of the primary
clouds. Fig. 6¢c shows that when the secondary clouds have
smaller capacity or there are more requests from the end users,
the secondary clouds tend to cooperate. This is because when
the total workload increases or the capacity of the primary
clouds decreases, the delay of processing time will be larger.
Therefore, the secondary clouds cooperate to share resources
and reduce delay.

D. Total Utility Comparison

In this subsection, we answer the last question in Section I: is
it beneficial for the secondary clouds to use a VHCF network?

We compare the secondary clouds’ total utility and total delay
penalty with different request scale for the following 4 cases:
1) VHCF network; 2) no cooperation (the case in [2]); 3) grand
coalition (the common practice of horizontal cloud federation);
4) optimal utility (workload factoring and coalition formation
are optimized by a mediator). We consider 2 primary clouds
and 5 secondary clouds. Except the capacity and request
scales, all the parameter values (please refer to Table II) are
set as in the above subsection. We fix the capacity scale of the
primary clouds as 100, and investigate different request scales
from 40 to 160.

As shown in Figs. 7a and 7b, the least pessimistic core
generates larger total utility than that of no-cooperation and
grand coalition. The total utility is higher when the workload
scale is closer to the capacity scale of the primary clouds
because when the workload is low, the gross revenue is low
(although there is a bonus of finishing the requests in advance),
but when the workload is too high, the penalty delay is too
large. By using the VHCF network, the secondary clouds
(using the t2.large VM from Amazon EC2 [41], with an
operating scale of 40 to 160 VMs) can averagely decrease
the delay penalty by 10.6% and 11.0%, compared with no-
cooperation and grand coalition, respectively. The strategic
decision making of the secondary clouds naturally leads to
a sub-optimal total utility. Unfortunately, the pessimistic core
bears an inevitable loss compared with the optimal case, since
each cloud provider is self-interested.

E. Compare Different Algorithms

Last, we compare the runtime and optimality of different
algorithms. In this subsection, all algorithms are implement-
ed using Java, all linear programs are solved with CPLEX
(v12.6) and all non-linear programs are solved with KNITRO
(v9.0.0). All computations are performed on a 64-bit machine
with 16 GB RAM and a quad-core Intel i7-4770 3.4 GHz
processor. We consider 2 primary clouds and vary the number
of secondary clouds. All the parameters are randomized as in
Subsection VI-C. All the results are averaged with 20 trials.

Fig. 8a shows the runtime of Brute-Force with CLONE un-
der different convergence threshold e, from 0.001 to 0.00001.
Intuitively, smaller e leads to longer runtime, which increases
rapidly with the number of secondary clouds. Fig. 8b shows
the runtime of Brute-Force and CUBE (with different pruning
thresholds #) with CLOSE. We can see that comparing with
Fig. 8a, the runtime of Brute-Force and CUBE with CLOSE
is significantly reduced. When the total number of secondary
clouds is smaller than 8, both of the two CLOSE-based
algorithms take less than 1 second to finish. Furthermore, by
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implementing CUBE, the runtime has significantly reduced
comparing with Brute-Force, while maintaining a close-to-
optimal least € value (Fig. 8c). With smaller 6, it takes less
time because more nodes are pruned during the searching. By
setting different pruning threshold, we can tradeoff between
runtime and optimality. Using these algorithms, we can solve
practical scale problems.

VII. CONCLUSION

The integration of vertical and horizontal cloud federation
is a promising approach to improve a cloud’s service quality.
Notwithstanding the merits, the economic aspects of such a
VHCF network is rarely investigated, especially when the
secondary clouds are self-interested. With this work, we make
the first attempt to reveal the interrelated workload factoring
and coalition formation among secondary clouds, and answer
the following intrinsic questions: 1) What is the most stable
coalition structure and payoff division; 2) What are the op-
timal (equilibrium) workload factoring strategies of different
coalitions; 3) Is it beneficial for the secondary clouds to join
such a VHCF network? The experimental results show that
interestingly, the two common practices in the real world -
no-cooperation and the grand coalition - are sometimes not
the most stable cooperation pattern. Instead, the most stable
coalition structure usually lies between these two extreme
cases. Furthermore, the experimental results show that by
implementing the VHCF network, the service delay penalty
of the secondary clouds decreases by around 11% compared
with the two common practices. The runtime and optimality
evaluation of the algorithms shows that our proposed algo-
rithms can be applied to real world sized problems, and
assist secondary clouds to choose their partners and decide
the optimal workload factoring strategies. Our framework can
be extended to a variety of network-related domains such as
cellular networks, cognitive radio networks and smart grid,
where cooperative and competitive behaviors coexist.
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