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Abstract

To alleviate traffic congestion in urban areas, electronic
toll collection (ETC) systems are deployed all over the
world. Despite the merits, tolls are usually pre-determined
and fixed from day to day, which fail to consider traffic
dynamics and thus have limited regulation effect when traffic
conditions are abnormal. In this paper, we propose a novel
dynamic ETC (DyETC) scheme which adjusts tolls to traffic
conditions in realtime. The DyETC problem is formulated
as a Markov decision process (MDP), the solution of which
is very challenging due to its 1) multi-dimensional state
space, 2) multi-dimensional, continuous and bounded action
space, and 3) time-dependent state and action values. Due
to the complexity of the formulated MDP, existing methods
cannot be applied to our problem. Therefore, we develop
a novel algorithm, PG-β, which makes three improvements
to traditional policy gradient method by proposing 1) time-
dependent value and policy functions, 2) Beta distribution
policy function and 3) state abstraction. Experimental results
show that, compared with existing ETC schemes, DyETC
increases traffic volume by around 8%, and reduces travel
time by around 14.6% during rush hour. Considering the
total traffic volume in a traffic network, this contributes to
a substantial increase to social welfare.

Introduction
Nowadays, governments face a worsening problem of traffic
congestion in urban areas. To alleviate road congestion, a
number of approaches have been proposed, among which
ETC has been reported to be effective in many countries
and areas (e.g., Singapore (LTA 2017), Norway (AutoPASS
2017)). The tolls of different roads and time periods
are different, so that the vehicles are indirectly regulated
to travel through less congested roads with lower tolls.
However, although current ETC schemes vary tolls at
different time periods throughout a day, they are pre-
determined and fixed at the same periods from day to day. A
few dynamic road pricing schemes (Joksimovic et al. 2005;
Lu, Mahmassani, and Zhou 2008; Zhang, Mahmassani, and
Lu 2013) have been proposed in the transportation research
community which consider the variations of traffic demands
over time. However, these tolling schemes still assume that
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traffic demands are fixed and are known a priori, and thus
are static in essence. In practice, traffic demands fluctuate
and cannot be predicted accurately, especially when the
traffic is abnormal (e.g., in case of traffic accidents, or city
events). As a result, these static tolling schemes usually
have limited regulation effect. One recent work of Sharon
et al. (2017) proposes a dynamic tolling scheme called ∆-
tolling, which assigns a toll to each road proportional to the
difference between its current travel time and its free-flow
travel time. However, ∆-tolling does not take a proactive
approach towards changes in the demand side. Instead, D-
tolling only reacts to such changes once they are detected. In
contrast, we propose a novel dynamic tolling scheme which
optimizes traffic over the long run, with the following three
major contributions.

The first key contribution of this paper is a formal
model of the DyETC problem. Since MDPs have various
advantages in modelling long term planning problems with
uncertainty, we formulate the DyETC problem as a discrete-
time MDP. Though several existing methods have been
proposed to solve the traffic assignment problem with
MDP (Akamatsu 1996; Baillon and Cominetti 2008), our
method is notably distinct from these works, in the sense
that they consider the uncertainty of drivers’ route choice
behavior, while this work considers the uncertainty of traffic
demand as well. The state of the formulated MDP is the
number of vehicles on a road that are heading to certain
destination, the action is the toll on each road, and the
formulated MDP has 1) a multi-dimensional state space, 2)
multi-dimensional, continuous and bounded action space,
and 3) time dependent state and action values.

Due to the huge size of the MDP, it is very challenging
to find its optimal policy. Traditional reinforcement learning
algorithms based on tabular representations of the value
and policy functions (e.g., tabular Q-learning (Watkins
1989), prioritized sweeping (Moore and Atkeson 1993),
Monte Carlo Tree Search (MCTS) (Coulom 2006) and
UCT (UCB applied to trees) (Kocsis and Szepesvári 2006))
cannot be applied to our problem due to the large scale
state and action spaces. Value-based methods with function
approximation (Precup, Sutton, and Dasgupta 2001; Maei
et al. 2010; Nichols and Dracopoulos 2014; Mnih et al.
2015), which represent the state-action values (often referred
to as “Q-values”) with function approximators are also



inefficient due to the complexity in selecting the optimal
action in a continuous action space. While policy gradient
methods (Williams 1992; Sutton et al. 1999; Peters and
Schaal 2008; Schulman et al. 2015) work well in solving
large scale MDPs with continuous action space, current
policy gradient approaches usually focus on MDPs with
unbounded action space. To handle bounded action spaces,
Hausknecht and Stone (2016) propose three approaches (i.e.,
zeroing, squashing and inverting) on the gradients which
force the parameters to preserve in their intended ranges.
These manually enforced constraints may deteriorate the
solution’s optimality.

To solve the DyETC problem, we make our second key
contribution by proposing an efficient solution algorithm,
PG-β (Policy Gradient method with Beta distribution based
policy functions). In the DyETC problem, the value of a
state is time-dependent. We make our first improvement by
extending the formulated MDP as time-dependent, adapting
the traditional policy gradient method to maintain a separate
value and policy function for each time period, and derive
the update rule for the parameters. Moreover, to balance
the tradeoff between “exploration” and “exploitation” for
continuous action space, traditional methods either perform
poorly in unbounded action space MDPs (Sutton et al.
1999), or manually enforce the parameters to guarantee the
bounded action space (Hausknecht and Stone 2016). To
overcome this deficiency, we make the second improvement
by proposing a novel form of policy function, which is
based on the Beta probability distribution, and deriving
its corresponding update rules. Last, to further improve
scalability of PG-β, we exploit the structure of the
formulated DyETC problem, and propose an abstraction
over the state space, which significantly reduces the scale
of the state space, while maintaining near-optimality.

Third, we conduct extensive experimental evaluations to
compare our proposed method with existing policy gradient
methods as well as current tolling schemes. The results
demonstrate that PG-β performs significantly better than
state-of-the-art policy gradient methods and current tolling
schemes. Performed in a road network of Singapore Central
Region, DyETC increases the traffic volume by around 8%,
and reduces the total travel time by around 14.6%.

Motivation Scenario

(a) ETC system (b) ETC gantry (c) ETC rates

Figure 1: ETC in Singapore

Since 1998, an ETC system has been deployed in
Singapore to alleviate its traffic congestion, especially in the
central region (Figure 1(a)). In an ETC system, vehicles are
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Figure 2: Road network of Singapore Central Region

charged when they pass through ETC gantries (Figure 1(b))
and use priced roads during peak hours. Typically, ETC
rates vary from different roads and time periods, which
encourages vehicles to change their travel routes in order to
alleviate traffic congestion. As shown in Figure 1(c), while
an ETC gantry charges different ETC rates at different time
periods, the rates are fixed during certain time periods from
Monday to Friday. This framework, which is demonstrated
to have significantly improved Singapore’s traffic, still has
two major shortcomings. First, the current ETC system is
determined based on the historical traffic flows, which fails
to adjust to the uncertainty of traffic demand. In reality,
the real-time traffic demand could fluctuate. For example,
during morning rush hour, we may know the average traffic
demand based on history, but the exact demand cannot
be precisely predicted. As a result, if we set tolls merely
according to average traffic demand but the real demand
is not as severe as expected, few vehicles will go through
this road even if the congestion is not severe since they
are scared off by the high tolls. Under such cases, the
current ETC system will have less positive or even negative
effect on the traffic condition. Second, current ETC rating
systems fail to precisely respond to the extent to which the
traffic is congested. As we can see from Figure 1(c), the
interval of the current tolling scheme is 0.5. For example,
the tolls are either 0 or 0.5, while the optimal toll might
be somewhere between these two rates. In such cases,
the current tolling scheme can hardly reveal and react to
the accurate congestion level. To further alleviate traffic
congestion in urban areas, we propose a novel dynamic ETC
scheme which is 1) fully dynamic and 2) finer-grained.1

Formulation of the DyETC Problem
In this section, we first introduce the dynamic ETC system,
and then formulate the DyETC problem as an MDP.

Dynamic ETC System
The urban city area can be abstracted as a directed road
networkG = (E,Z,O), whereE is the set of roads,Z is the

1Such dynamic toll information can be displayed on telescreens
along roads which can be easily accessed by drivers. Moreover,
with the introduction of intelligent agent-based vehicles and even
autonomous vehicles (e.g., in Singapore (LTA 2016)), autonomous
agents are able to aid the drivers in deciding the optimal travel
routes under the proposed DyETC scheme.



set of zones andO is the set of origin-destination (OD) pairs.
Take Singapore Central Region as an example (Figure 2),
there are altogether 11 zones and 40 abstracted roads.2 The
decision time horizon H (usually the length of rush hour) is
discretized into several intervals, with a length of τ (e.g., 10
minutes) for each interval. For time period t = 0, 1, . . . ,H ,
we denote an OD pair as a tuple 〈zi, zj , qti,j , Pi,j〉, where
zone zi is the origin, zone zj is the destination, qti,j denotes
traffic demand during time t, and Pi,j denotes the set of all
possible paths from zi to zj which do not contain a cycle.
Different from most previous works which assume that the
OD traffic demand qti,j for a certain time period t is fixed and
known a priori, we consider dynamic OD travel demand,
where the travel demand of an OD pair follows a probability
distribution function (PDF) qti,j ∼ f(qti,j).

We follow the commonly used travel time model (BPR
1964) to define the travel time on a road e at t:

T te = T 0
e [1 +A(ste/Ce)

B ]. (1)

ste is the number of vehicles on road e. Ce and T 0
e are road-

specific constants, where T 0
e is interpreted as the free-flow

travel time, and Ce is the capacity of the road. A and B
are constants which quantify the extent to which congestion
influences travel time. Consequently, average travel speed is
Le

T t
e

= Le

T 0
e [1+A(ste/Ce)B ]

, where Le is the length of road e. At
time t, the travel cost of a path p ∈ Pi,j , which we denote as
ci,j,p, consists of both time and monetary costs:

cti,j,p =
∑

e∈p
(ate + ωT te), (2)

where ate is the toll imposed on road e, and ω is a constant
which reveals the value of time. To make the analysis
tractable, we assume that all vehicles have the same value
of time. Given the current traffic condition (i.e., number
of vehicles on each road) and tolls, each vehicle will
select a path p ∈ Pi,j leading to its destination, which
aggregately forms a traffic equilibrium. To describe this
traffic equilibrium, we adopt a widely-used stochastic user
equilibrium (SUE) model (Lo and Szeto 2002; Lo, Yip, and
Wan 2003; Huang and Li 2007), where the portion of traffic
demand xti,j,p travelling with path p ∈ Pi,j is

xti,j,p =
exp{−ω′cti,j,p}∑

p′∈Pi,j
exp{−ω′cti,j,p′}

. (3)

ω′ is a constant measuring vehicles’ sensitivity to travel cost.

An MDP Formulation
In general, the government sets the tolls for the current
time period and announces them to the vehicles, while
each vehicle individually selects paths according to the total
travel cost, and the aggregate choice of all the vehicles is
assumed to follow the discrete choice model in Eq.(3). We

2Each pair of two adjacent zones has two directed roads. If there
are multiple roads from one zone to another, they could be treated
as one abstracted road, where the capacity of the abstracted road
is a sum of these roads, and the length of the abstracted road is an
average of these roads.
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Figure 3: Event timeline of two subsequent time periods

formulate the DyETC problem as a discrete time MDP, due
to its advantages in modeling sequential planning problems.
State & action. At the beginning of time period t, the state
is defined as the number of vehicles ste,j on each road e that
are going to destination zj . ste = 〈ste,j〉 is the state vector
of a road e, and st = 〈ste〉 is the state matrix of the road
network G. At time t, the government’s action is to set the
tolls at = 〈ate〉, e ∈ E′, whereE′ ⊆ E is the subset of roads
which have ETC gantries.

Since both the traffic condition and tolls change over time,
a vehicle has an incentive to change its path once it reaches
the end of a road. The path readjustment does not depend
on the past decisions of the vehicle, but only depends on its
destination. Therefore, for a vehicle that arrives at the end
zi of a road e, we treat it as a vehicle from the new origin
zi, while maintaining its destination zj . To distinguish these
vehicles with those that really use zi as the origin, we define:

Definition 1. At time period t, the primary OD demand qti,j
from zi to zj is the number of vehicles that originate from zi
at time period t; while the secondary OD demand q̄ti,j is the
number of vehicles that come from zi’s neighbouring roads
during time period t− 1 that are heading for destination zj .

We refer to Figure 3 as an illustration of the event timeline
for two subsequent time periods. At the beginning of time
period t, tolls are decided based on the state st of the current
time period. After the tolls are announced to the vehicles,
the vehicles will react to the tolls and traffic conditions and
a SUE will gradually form during time period t. In practice,
it usually takes time to form an SUE and it keeps evolving
over time. Before the SUE is formed, the number of vehicles
on a road is normally larger (or smaller) than that in the
SUE, while after the SUE, the number is usually smaller (or
larger). To make the analysis tractable, we use the number of
vehicles when the SUE is formed to approximate the average
number of vehicles on a road during time period t.
State transition. After the SUE is formed, the state of the
next time period can be derived. At the beginning of time
t+ 1, the number of vehicles on road e is determined by the
number of vehicles that 1) stay on road e, 2) exit road e, and
3) enter road e during time t. Formally,

st+1
e,j = ste,j − ste,j,out + ste,j,in. (4)

We make a mild and intuitive assumption that the number
of vehicles ste,j,out that exit a road e is proportional to the



average travel speed during time period t. Thus,

ste,j,out = ste,j ·
υte · τ
Le

=
ste,jτ

T 0
e [1 +A(ste/Ce)

B ]
, (5)

where Le is the length of road e.
We now derive the last term ste,j,in in Eq.(4). Recall that

the total demand of an OD pair is the sum of primary and
secondary OD demand. The secondary demand of an OD
pair from zi to zj is

q̄ti,j =
∑

e′+=zi
ste′,j,out, (6)

where e+ is the ending point of road e (correspondingly, we
use e− to denote the starting point of e). Note that during
time t, for an OD traffic demand from zi to zj to be counted
as a component of ste,j,in, two conditions must be satisfied.
First, zi should be the starting point of e, i.e., zi = e−.
Second, at least one of the paths from zi to zj should contain
road e, i.e., e ∈ p ∈ Pi,j . Thus, we have:

ste,j,in =
∑

zi=e−∩e∈p∈Pi,j

(qti,j + q̄ti,j) · xti,j,p. (7)

Combining Eqs.(4)-(7), there is:

st+1
e,j = ste,j −

ste,jτ

T 0
e [1 +A(ste/Ce)

B ]
+∑

zi=e−∩e∈p∈Pi,j

(qti,j +
∑

e′+=vi
ste′,j,out) · xti,j,p.

(8)

Value function & Policy. From the perspective of the
government, a good traffic condition means that, during
the planning time horizon H , the total traffic volume (i.e.,
the number of vehicles that reach their destinations) is
maximized.3 Formally, we define the immediate reward
function Rt(st,at) as the number of vehicles that arrive at
their destinations during time t:

Rt(st) =
∑

e∈E

∑
zj=e+

ste,jτ

T 0
e [1 +A(ste/Ce)

B ]
. (9)

Note that we simplify the notation as Rt(st) since it does
not depend on at. The long term value function vt(st) is the
sum of rewards from t to t+H:

vt(st)=
∑t+H

t′=t
γt
′−tRt

′
(st
′
), (10)

where γ is a discount factor. At time t, a policy πt(at|st)
is a function which specifies the conditional probability of
taking an action at, given a certain state st. The optimal
policy maximizes the value function in Eq.(10):

πt,∗(at|st) = arg maxπt vt(st). (11)

3DyETC can be extended to optimize other objective functions,
total travel time among them, by changing the reward function
appropriately. We leave such extensions to future work.

Solution Algorithm: PG-β
It is very challenging to find the optimal policy function
for the formulated DyETC problem due to three reasons.
First, the state space is multi-dimensional w.r.t. the number
of roads and destinations. Second, the action space is
also multi-dimensional w.r.t. the number of ETC gantries.
Moreover, the action space is bounded and continuous. Last,
both the state and action values are dependent on the specific
time periods. As a result, it is intractable to find the optimal
policy function by simply going through all combinations of
state-action pairs, which would be on an astronomical order.

Although numerous reinforcement learning algorithms
have been proposed to solve MDPs, they cannot be directly
applied to our problem due to the complexities presented
above. While the policy gradient methods (Williams 1992;
Sutton et al. 1999) have shown promise in solving
large scale MDPs with continuous action spaces, current
policy gradient methods usually focus on MDPs with
unbounded action spaces. In the following, we present our
solution algorithm, PG-β (Policy Gradient method with Beta
distribution based and time-dependent policy functions),
with novel improvements to typical applications of policy
gradient methods.

General Framework of PG-β

Algorithm 1: PG-β
1 Initialize ϑϑϑt ← ϑϑϑ0, θθθt ← θθθ0, ∀t = 0, 1, . . . ,H;
2 repeat
3 Generate an episode s0,a0, R0, . . . , sH ,aH , RH ;
4 for t = 0, . . . ,H do
5 Qt ←

∑H
t′=tR

τ ;
6 δ ← Qt − v̂(st,at,ϑϑϑt)
7 ϑϑϑt ← ϑϑϑt + βδ∇ϑϑϑt v̂(st,ϑϑϑt);
8 θθθt ← θθθt + β′δ∇θθθt log πt(at|st, θθθt)
9 until #episodes= M

10 return θθθt, ∀t = 0, 1, . . . ,H;

The idea of PG-β is to approximate the policy function
with a parameterized function, and update the parameter
with stochastic gradient descent method. More specifically,
PG-β incorporates an actor-critic architecture, where the
“actor” is the learned policy function which performs action
selection, and the “critic” refers to the learned value function
measuring the performance of the current policy function.

In Algorithm 1, the input of PG-β includes the planning
horizon H , the state transition function Eq.(8), a set of
parameterized value functions vt(s,ϑϑϑt) w.r.t. parameter
ϑϑϑt (∀t = 0, . . . ,H), and a set of parameterized policy
functions πt(a|s, θθθt) w.r.t. parameter θθθt (∀t = 0, . . . ,H).
The algorithm starts with an initialization of the parameters
ϑϑϑt and θθθt. It then enters the repeat loop (Lines 2-9).
In the repeat loop, it first simulates an episode, which
contains a series of state-action pairs in the planning horizon
H . The states are generated following the state transition
function Eq.(8), the actions are selected following the



policy function π(a|s, θθθ), while the immediate rewards are
computed with Eq.(9). After an episode is simulated, the
algorithm then updates the parameters at each time period
t = 0, . . . ,H (Lines 4-9) with stochastic gradient descent
method. Qt denotes the sum of rewards from time t to
H obtained from the simulated episode, which reveals the
“real” value obtained by the current policy, while v̂t(st,ϑϑϑt)
is the “estimated” sum of rewards approximated by the
parameterized value function vt(st,ϑϑϑt). Consequently, δ
denotes the difference of these two terms. In Lines 7-8, PG-
β updates the parameters by our derived update rule which
is to be introduced in the two subsequent subsections. This
process iterates until the number of episodes reaches a pre-
defined large number M (e.g., 100,000).

Policy Gradient for Time-Dependent MDP
A fundamental property of traditional MDPs is that the
value of a state does not change over time. However, such
property does not exist in our problem. Intuitively, with the
same number of vehicles on the road network, the number
of vehicles that reach the destinations (i.e., the objective)
still depends on the OD demand of a specific time period
as well as future periods. Consequently, the value of an
action is also dependent on the specific time period. This
class of MDPs is called finite horizon MDPs (FHMDPs).
For FHMDPs, we need to maintain and update a value
function vt(s,ϑϑϑt) and a policy function πt(a|s, θθθt) for each
time step t = 0, 1, . . . ,H , as shown in Algorithm 1. The
following theorem ensures that the update of θθθt improves
action selection in the FHMDP.4

Theorem 1. The gradient function of policy gradient
method on FHMDPs is

∇θθθtvπ(s) = Qt(st,at)∇θθθt log πt(at|st, θθθt), (12)
where Qt(st,at) is the action value of at given state st.

Proof. We first write the state value as the expected sum
of action values, i.e., vt(st) =

∑
at πt(at|st, θθθt)Qt(st,at),

where Qt(st,at) =
∑

st+1 P (st+1,at, st)vt+1(st+1). Since
both the transition probability function P (st+1,at, st) and
the value function vt+1(st+1) of time t + 1 do not depend
on θθθt, Qt(st,at) is also independent on θθθt. Thus, we have

∇θθθtvt(st) =
∑

at
Qt(st,at)∇θθθtπt(at|st, θθθt)

=
∑

at
πt(at|st, θθθt)Qt(st,at)∇θθθ

tπt(at|st, θθθt)
πt(st,at)

(multiplying and dividing by πt(at|st, θθθt))

= E[Qtπ(st,at)
∇θθθtπt(at|st, θθθt)
πt(at|st, θθθt)

].

4For FHMDPs, a natural alternative is to incorporate the time
as one extra dimension of state. However, experimental results (see
Figure 4(a)) show that this alternative does not work well using
polynomial basis functions where states are not interrelated. Other
alternatives might be to utilize an intrinsic basis function, or use
deep neural networks to represent the policy functions. However,
such intrinsic functions are very hard to find (perhaps it does not
exist), while the time consumed in training an effective neural
network is usually way longer than training linear policy functions.

For stochastic gradient, a sampled action At is used to
replace the expectation, i.e.,

∇θθθtvt(st) = Qtπ(st,At)
∇θθθtπt(At|st, θθθt)
πt(At|st, θθθt)

= Qt(st,At)∇θθθt log πt(At|st, θθθt)

A Novel Policy Function Based on the Beta PDF
An important challenge of the policy gradient method is to
balance the “exploitation” of the optimal action generated
from the policy function and the “exploration” of the action
space to ensure that the policy function is not biased. For
MDPs with continuous action space, a Normal PDF has
been used in recent works (Sutton and Barto 2011) as the
policy function. While Normal PDF works well in cases
where the action space is unbounded, it is not suitable
for MDPs which have bounded action spaces, since the
action generated by the Normal PDF policy function would
possibly become infeasible. In practice, tolls are restricted
within a certain interval [0, amax] (e.g., in Singapore, tolls are
within 6 Singapore dollars). A straightforward adaptation is
to project the generated action to the feasible action space
whenever it is infeasible. However, experimental results
(will be presented later in Figure 4(a)) show that, even
with such adaptation, Normal PDF policy function performs
poorly in solving MDPs with bounded action spaces.

To adapt policy gradient methods to bounded action
space, we propose a new form of policy function, which is
derived from Beta PDF f(x):

f(x, λ, ν) =
xλ−1(1− x)ξ−1

B(λ, ξ)
, (13)

where the Beta function, B(λ, ξ) =
∫ 1

0
tλ−1(1 − t)ξ−1dt

is a normalization constant, and the variable x ∈ [0, 1] is
bounded and continuous. For each road e, let xe = ae/amax,
then the policy function is denoted as

πe(ae = xeamax|s, λe, ξe) =
xλe−1
e (1− xe)ξe−1

B(λe, ξe)
, (14)

where λe = λe(φφφ(s), θθθλ) and ξe = ξe(φφφ(s), θθθξ) are
parameterized functions, and θθθλ and θθθξ are parameters to
be approximated. For example, in the commonly utilized
linear function approximation, each λe and ξe is represented
by a linear function of the parameters θθθλ and θθθξ: λe =
θθθλ ·φφφ(s), ξe = θθθξ ·φφφ(s).

Proposition 1. Using Beta PDF policy function, the update
rule for a parameter θλe,e′,j,i (associated with road e) is

θλe,e′,j,i←θλe,e′,j,i+β′δ[ln(xe)−Ψ(λe)+Ψ(λe+ξe)]
∂λe

∂θλe,e′,j,i
,

θξe,e′,j,i←θ
ξ
e,e′,j,i+β

′′δ[ln(1−xe)−Ψ(ξe)+Ψ(λe+ξe)]
∂ξe

∂θξe,e′,j,i
,

where β′ and β′′ are learning rates for θλ and θξ,
respectively, Ψ(·) is the diagamma function. e′, j and i
respectively correspond to a road, a destination and a
dimension in the basis functions.



Proof. For ease of notation, we discard the superscript t. In
Eq.(12), for edge e and dimension i of θθθλ, by substituting
π(a|s, θθθ) with Eq.(14), we have

∂v(s)

∂θλe,e′,j,i
=
Q(s,a)∂πe(ae|s, θλe,e′,j,i)
πe(ae|s, θλe,e′,j,i)∂θλe,e′,j,i

=
Q(s,a)

πe(ae|s, θλe,e′,j,i)
∂πe(ae|s, θλe,e′,j,i)

∂λe

∂λe
∂θλe,e′,j,i

=
Q(s,a)

πe(ae|s, θλe,e′,j,i)
∂ξe

∂θξe,e′,j,i
[
xλe−1
e lnxe(1− xe)ξe−1

B(λe, ξe)
−

xλe−1
e (1− xe)ξe−1∂B(λe, ξe)/∂λe

B2(λe, ξe)
]

=
Q(s,a)

πe(ae|s, θλe,e′,j,i)
∂ξe

∂θξe,e′,j,i

xλe−1
e (1− xe)ξe−1[lnxe −Ψ(λe) + Ψ(λe + ξe)]

B(λe, ξe)

= Q(s,a)[lnxe −Ψ(λe) + Ψ(λe + ξe)]
∂ξe

∂θξe,e′,j,i

By replacing Q(s,a) with δ, we obtain the update rule for
θλe,e′,j,i. Similarly, we derive the update rule for θξe,e′,j,i.

State Abstraction
As discussed above, there are two corresponding parameters
θλe,e′,j,i and θξe,e′,j,i for each edge e, each edge e′, each
destination j and each dimension i in the basis functions.
As a result, the total number of parameters in the policy
function is of order ∝ |E|2|Z|Hd, where |E|, |Z|, H
and d are respectively the number of edges, number of
vertices (destinations), length of time horizon and number of
dimensions in the basis functions. In this case, when a road
network grows too large, it becomes rather time consuming
for PG-β to learn an effective tolling policy. Moreover,
higher dimension states may lead to over-fitting. To handle
these two issues, we conjecture:
Conjecture 1. The vehicles on a same edge that are going
to different destinations have almost equal effects on tolls.

This conjecture means that, for the tolls on road e, the
parameters (weights) associated to se′,j and se′,i are equal:

θλe,e′,j,i = θλe,e′,j′,i = θλe,e′,i,∀j, j′ (15)

θξe,e′,j,i = θξe,e′,j′,i = θξe,e′,i,∀j, j
′ (16)

The supporting evidence of this conjecture will be shown
through experimental evaluations.

Experimental Evaluation
In this section, we conduct experiments on both simulated
settings and a real-world road network in Singapore Central
Region to evaluate our proposed DyETC scheme and its
solution algorithm PG-β. All algorithms are implemented
using Java, all computations are performed on a 64-bit
machine with 16 GB RAM and a quad-core Intel i7-4770
3.4 GHz processor.
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Figure 4: Performance of different policy gradient methods

Evaluation on Synthetic Data
We first conduct experiments on synthetic data. For policy
gradient methods, we first obtain the policy function
with offline training, and then use the trained policy to
evaluate their performance. Unless otherwise specified, the
parameters of this subsection are set as follows.

Learning-related parameters. The learning rates of the
value function and policy function are hand-tuned as 10−7

and 10−10, respectively. The discount factor γ is set as 1,
which assigns same weights to rewards of different time
periods in the finite time horizonH . The number of episodes
for training is 50,000 and the number of episodes for
validation is 10,000.

Road network-related parameters. The number of zones
in the simulation is set as |Z| = 5, and all zones can be
destinations, i.e., |Z ′| = |Z|. The number of roads is set to
14, and all roads have ETC gantries, i.e., |E′| = |E| = 14.
The lengths of roads are randomized within [4, 10] km,
which is the usual length range between zones of a city.
Capacity of a road is set as 50 vehicles per kilometer per
lane. This amount is obtained from an empirical study of
Singapore roads (Olszewski 2000). Free flow travel speed
T 0
e

Le
= 0.5 km/min. The parameters in the travel time model

Eq.(1) is set as A = 0.15, B = 4 according to (BPR 1964).
Demand-related parameters. OD demand is simulated as

a step function of time, where demand at time t = 0 is the
lowest, and gradually grows to peak demand in the middle
of the planning time horizon, and decreases again to a lower
level. The peak demand for each OD pair is randomized
within [8, 12] vehicles per minute, which is a reasonable
amount. The OD demand at t = 0 (which is usually the
beginning of rush hour) is set as 60% of the peak demand.
Initial state is randomized within [0.5, 0.7] of the capacity of
a road.

Toll-related parameters. Maximum toll amax = 6. This
value is obtained from the current toll scheme in Singapore.
Planning horizon H = 6. Length of a time period τ =
10mins. Passenger cost-sensitivity level ω′=0.5, and value
of time ω=0.5. We will evaluate other values for these two
terms.
Comparison of different policy gradient methods.

We compare the learning curve and solution quality of
PG-β with the following policy gradient algorithms.

1. PG-N: policy gradient (PG) with Normal distribution
based policy function.
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Figure 5: Traffic volume (in thousands) of existing tolling schemes under various traffic conditions
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2. PG-I: PG with time-independent policy function.

3. PG-time: PG-β where time is incorporated into state.

4. PG-β-abs: PG-β with state abstraction.

Figure 4(a) shows the learning curve of different policy
gradient methods, where x-axis is the number of training
episodes, y-axis is the traffic volume (in thousands). It shows
that PG-β and PG-β-abs converge faster (in terms of number
of training episodes) than other policy gradient methods, and
achieve higher traffic volume after 50, 000 episodes. It is
worth mentioning that the classical policy gradient method
PG-N cannot learn an effective policy in our problem.
Moreover, the learning curves of PG-β and PG-β-abs almost
overlap, which gives supporting evidence to Conjecture 1.
Figure 4(b) presents per episode runtime (in milliseconds)
of different policy gradient methods, where PG-β-abs has
the shortest per episode runtime. Combining the two figures,
we conclude that PG-β-abs is the best approach in terms of
both runtime efficiency and optimality. In the following, we
implement PG-β-abs to compare with other existing tolling
schemes, while using PG-β to denote PG-β-abs for neatness
of notation.
Comparison of PG-β with existing tolling schemes under
different settings. We now compare PG-β with the
following baseline tolling schemes:

1. Fix: fixed toll proportional to average OD demand.

2. DyState: dynamic toll proportional to the state scale.

3. ∆-toll (Sharon et al. 2017).

4. P0: no tolls.

To compare tolling schemes under different settings, we
vary the traffic parameter which under evaluation, and keep
all the other parameters as stated above. Figure 5 shows the
traffic volume obtained by different tolling schemes under
different settings, where the y-axis is the traffic volume,
and the x-axis is the value of the parameter that is under
evaluation. Figures 5a-5b show that, the traffic volume

increases linearly w.r.t. the increasing initial state and OD
demand ratio, and PG-β works well under different initial
state and OD demand scales. Similarly in Figures 5c-5d,
with a higher cost-sensitivity level and value of time, the
traffic volume of all tolling schemes increases. According to
Eq.(3), this is intuitive in the sense that when the travelling
cost of a congested road grows (faster than a less congested
road), vehicles diverge towards less congested roads with
less travelling cost. When these two parameters grow too
large, the regulation effect of all tolling schemes becomes
saturated and traffic volume converges to a maximum
amount. In this case, PG-β has a larger maximum limit
than other tolling schemes. Figure 5e shows that PG-β
works well with different maximum toll amounts, and it
works even better when the maximum toll amount grows. In
general, PG-β outperforms existing tolling schemes under
all settings. It is worth mentioning that, the state-of-the-
art ∆-tolling approach, which does not take a pro-active
approach towards changes in the demand side, does not work
well in our setting.

To demonstrate that our DyETC framework can be
adapted to other objectives, we also evaluate the total travel
time of different tolling schemes under the above settings
(Figure 6, where the y-axis is the total travel time). We can
see that PG-β still significantly outperforms all the other
tolling schemes (the less total travel time, the better).

Evaluation on a Real-World Road Network of
Singapore Central Region
In this subsection, we evaluate the performance of PG-β
for its regulation effect on the morning rush hour traffic
of Singapore Central Region. The number of episodes for
training PG-β is 500, 000, and the learning rates for the
value and policy functions are fine-tuned as 10−8 and
10−12, respectively. Figure 7 shows the abstracted road
network of Singapore Central Region, where the zones
are labelled from 1 to 11. The numbers along the roads
denote the travel distance of the adjacent zones, which is
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Figure 8: Performance of existing tolling schemes evaluated
in Singapore Central Region

obtained from Google Map. Since the OD demand is not
revealed by Singapore government, we use the population
of different zones to estimate it. The data is obtained from
the Department of Statistics (2017) of Singapore in 2016.
We first obtain the total number of vehicles as 957, 246 and
the population of Singapore as 5, 535, 002. The per person
vehicle ownership is 956, 430/5, 696, 506 = 0.173. We then
obtain the population of each zone in the Central Region
and thus are able to estimate the number of vehicles in each
zone (the origin side during morning rush hour). For the
destination side, we categorize the 11 zones into 3 types:
type 1 is the Downtown Core which is the center of the
Central Region, type 2 is the zones that are adjacent to
Downtown Core, type 3 is the other zones. We assume a
1 : 0.8 : 0.6 of demand ratio for these three types of zones.
We assume 40% of the vehicles in each zone will go to the
Central Region. All the other parameters are estimated as
those in the above subsection.

As shown in Figure 8, when applied to Singapore Central
Region, DyETC significantly outperforms the other tolling
schemes, in terms of both total traffic volume and total travel
time. Compared with the second best tolling scheme (Fix),
DyETC is able to increase the traffic volume by around 8%
(compared with Fix), and decrease the total travel time by
around 14.6% (compared with ∆-tolling).

Conclusion & Future Research
In this paper, we propose the DyETC scheme for optimal
and dynamic road tolling in urban road network. We make
three key contributions. First, we propose a formal model of
the DyETC problem, which is formulated as a discrete-time

MDP. Second, we develop a novel solution algorithm, PG-β
to solve the formulated large scale MDP. Third, we conduct
extensive experimental evaluations to compare our proposed
method with existing tolling schemes. The results show that
on a real world traffic network in Singapore, PG-β increases
the traffic volume by around 8%, and reduces the travel time
by around 14.6% during rush hour.

Our DyETC scheme can be adapted to various dynamic
network pricing domains such as the taxi system (Gan et
al. 2013; Gan, An, and Miao 2015) and electric vehicle
charging stations network (Xiong et al. 2015; 2016). While
our current work focused on a single domain with a
relatively small scale traffic network, we will extend DyETC
to larger scale networks. Potential approaches include
stochastic optimization methods such as CMA-ES (Hansen
2006), continuous control variants of DQN (Mnih et
al. 2015) such as DDPG (Lillicrap et al. 2015) and
NAF (Gu et al. 2016), parallel reinforcement learning such
as A3C (Mnih et al. 2016) and variance reduction gradient
methods such as Averaged-DQN (Anschel, Baram, and
Shimkin 2017).
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