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A B S T R A C T

Conventional intersection managements, such as signalized intersections, may not necessarily be
the optimal strategies when it comes to connected and automated vehicles (CAVs) environment.
Autonomous intersection management (AIM) is tailored for CAVs aiming at replacing the con-
ventional traffic control strategies. In this work, using the communication and computation
technologies of CAVs, the sequential movements of vehicles through intersections are modelled
as multi-agent Markov decision processes (MAMDPs) in which vehicle agents cooperate to
minimize intersection delay with collision-free constraints. To handle the huge dimension scale
incurred by the nature of multi-agent decision making problems, the state space of CAVs are
decomposed into independent part and coordinated part by exploiting the structural properties of
the AIM problem, and a decentralized coordination multi-agent learning approach (DCL-AIM) is
proposed to solve the problem efficiently by exploiting both global and localized agent co-
ordination needs in AIM. The main feature of the proposed approach is to explicitly identify and
dynamically adapt agent coordination needs during the learning process so that the curse of
dimensionality and environment nonstationarity problems in multi-agent learning can be alle-
viated.
The effectiveness of the proposed method is demonstrated under a variety of traffic conditions.

The comparison analysis is performed between DCL-AIM and the First-Come-First-Serve based
AIM (FCFS-AIM), with Longest-Queue-First (LQF-AIM) policy and the signal control based on the
Webster’s method (Signal) as benchmarks. Experimental results show that the sequential deci-
sions from DCL-AIM outperform the other control policies.

1. Introduction

Connected and automated vehicles (CAVs) are seen as the future of transportation (Fagnant and Kockelman, 2015). CAVs have the
ability to communicate with each other (Vehicle-to-Vehicle, V2V), road infrastructures (Vehicle-to-Infrastructure, V2I), and even
non-motorized road users including pedestrians (Vehicle-to-X, V2X). After reaching a certain level, CAVs can drive themselves
without the input of human beings, relying only on the computer control systems they are equipped with. Currently, these com-
munication technologies and control systems are still in the research and testing phase. However, the promising benefits of CAVs are
foreseeable. On one aspect, CAVs can make the road traffic safer because they can coordinate their movements through connectivity.
Moreover, as the movements are coordinated, unnecessary stop-and-go behaviors will be reduced, thereby reducing emission.
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Further, CAVs can also provide intelligent transport services, such as the shared autonomous vehicles (Lokhandwala and Cai, 2018).
Once CAVs become a reality, further traffic flow improvements can be expected. CAVs will change the way people travel and

reshape the existing transportation system. The consequent updates of traffic control and management are necessary. As the crux of
traffic network, updated intersection management for CAVs has been researched (Chen and Englund, 2016). Autonomous intersection
management (AIM) is one of the updated intersection control strategies tailored for CAVs. AIM, proposed by Dresner and Stone
(2004), divides intersections into a grid of space-time cells to manage the coordinated movement of CAVs. CAVs wishing to cross the
intersection make requests to reserve cells from the Intersection Manager (IM). The IM accepts or rejects reservations in accordance
with its control policy. The most commonly used policy is first-come-first-serve (FCFS), in which reservations of CAVs are prioritized
by their arriving time and reservation time. Based on FCFS policy, further researches assigned higher priority for emergency vehicles
(Dresner and Stone, 2006) and determined the priority pattern by using auctions (Schepperle and and Böhm, 2007). It has been
demonstrated that FCFS based AIM and its variants can reduce delay and emission compared to conventional signal control under
certain traffic conditions (Fajardo et al., 2011; Li et al., 2013).
However, for a dynamic system like AIM where the traffic environment changes over time, a predefined policy may become

suboptimal or even inappropriate. Levin et al. (2016) demonstrated that FCFS based AIM may not outperform traffic signals on some
realistic networks. This indicates that the optimal policy based on environmental dynamics deserves more in-depth research. In this
paper, we aim to propose an optimal AIM framework which fully incorporates the real-time traffic dynamics for CAVs.
In our research framework, the processes of how CAVs cross the intersection are modelled as multi-agent Markov decision

processes (MAMDPs) which are extended from single-agent MDPs. The curse of dimensionality incurred by the large number of
agents is the main problem in solving MAMDPs. Reinforcement learning (RL), especially multi-agent reinforcement learning (MARL),
has been proposed to solve MAMDPs. Generally, in RL, agents learn the optimal policy by trial-and-error interaction with the dynamic
environment which can be formally described by Markov decision processes (MDPs) (Sutton and Barto, 1998). In AIM, CAVs are the
autonomous agents who perceive and interact with the real time traffic situations (environment) using their advanced commu-
nication technologies and sensors. More specifically, we customize an MARL algorithm, called DCL-AIM algorithm, to solve the deci-
sion-making problems of CAVs.
The contributions of this paper are as follows. The process of passing CAVs through an intersection is modelled as MAMDP.

Decentralized learning is applied to reduce the impact of dimensionality in solving the model, while coordination learning is adopted
to mitigate the effects of environment nonstationarity problem in decentralized multi-agent learning. Taking advantage of the sparse
interacting characteristic between CAVs, DCL-AIM algorithm decomposes the multi-agent decision making problem in AIM into sub-
problems by explicitly identifying and dynamically adapting agent coordination needs during the learning process. The coordination
needs are limited to specific parts of the state space where there are potential conflicts. Coordinated joint-actions ensure that the
policies learned are collision-free, and reward function is designed to enable the learned policies to be equal to the intersection delay
minimization.
The remainder of this paper is organized as follows. Section 2 briefly reviews previous work on AIM. Section 3 is the problem

statement, detailing the multi-agent formulation of AIM problem. Section 4 introduces the main methods we used in the research,
including how we model the optimization problem of AIM into decentralized coordination learning problem and the algorithms
proposed to solve the problem. Section 5 presents the details of simulation implementations, the performance of the solution methods
and the analysis results of the effectiveness comparison. Section 6 concludes the paper and identifies the direction of future work.

2. Related work

Conventional intersection managements, such as signalized intersections, are not necessarily the optimal strategies when it comes
to CAVs environment. There are new alternative intersection managements customized for CAVs.
One such new intersection management that has attracted a lot of attention is the reservation based autonomous intersection

management (AIM) proposed by Dresner and Stone (2004). AIM divides intersections into a grid of space-time cells to manage the
coordinated movement of CAVs. The vehicle agents attempt to reserve cells in the intersection, then the intersection manager decides
whether to grant or reject requested reservations according to an intersection control policy, named FCFS, because of the First-Come-
First-Serve nature of the reservations. Based on FCFS, emergency vehicles are given higher priorities in Dresner and Stone (2006), and
auctions are used to determine the priority pattern in Carlino et al. (2013). The seminal work of Stone and his team (Dresner and
Stone, 2008; Hausknecht et al., 2011) have demonstrated that the FCFS protocol outperforms conventional intersection control
protocols, such as signal control and all-stop control, under certain traffic conditions. The similar efficacy of auction-based control
protocol also has been validated (Schepperle and and Böhm, 2007; Schepperle and Böhm, 2008; Vasirani and Ossowski, 2012; Carlino
et al., 2013).
Although it has been demonstrated in the literature that AIM and its variants have the potential to mitigate traffic congestion in

urban areas, their pre-determined control policies may result in the priority assignments being only feasible but not optimal.
Some further studies focused on the optimization of AIM. Lee et al. (2013) proposed a cooperative vehicle intersection control

(CVIC) algorithm to minimize total length of overlapped trajectories within the intersection zone. Their objective function is equal to
delay or travel time minimization, however, the constraints are nonlinear, which may result in the final solution set containing
overlapped trajectories (collisions). In order to overcome the shortcomings of the nonlinear optimizing algorithms, Zhu and Ukkusuri
(2015) proposed a linear programming formulation of AIM, which minimizes the total travel time by modelling the conflict points.
Levin et al. (2017) aggregated the conflict points model into conflict regions and derived a corresponding integer programming to
further improve computational efficiency. Sun et al. (2017) proposed a multi-objective mixed-integer non-linear programming
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designed to maximize intersection capacity. Mirheli et al. (2018) proposed a signal-head-free intersection control logic (SICL) for AIM
to maximize the intersection throughput under collision-free constraints. Further, taking SICL as benchmark, a distributed SICL (DC-
SICL) is proposed (Mirheli et al., 2019) where the vehicle-level mixed-integer non-linear programming is formulated with the ob-
jective of minimizing travel time and speed variations of each CAV. There are also works on fuel consumption minimization (Zhang
et al., 2016), energy-optimal control (Malikopoulos et al., 2018), and multiple performance measures (delay, fuel consumption, and
safety) (Guo et al., 2019), etc.
The optimization approaches for AIM mentioned above are more or less faced with the computational intractability problem

caused by traffic dynamics. More simple and effective optimization control is worth studying.
The ability to learn and find out the optimal decisions through dynamic interaction with the environment enables RL to be

competent for the adaptive control tasks of many intelligent transportation systems (Bazzan and Klügl, 2014), and RL is applied at
most to the adaptive traffic signal control system. One of the first trials was conducted by Abdulhai et al. (2003). They demonstrated
that the RL-based adaptive traffic signal has better performance than conventional traffic signal control through a case study of an
isolated intersection. This isolated intersection case then was extended and applied to a signal network situation using multi-agent RL
approaches (Arel et al., 2010; Jin et al., 2012). There is a detailed review of RL-based adaptive traffic signal control given by Mannion
et al. (2016). In addition, RL is also applied to the dynamic speed limit control of connected vehicles (Zhu and Ukkusuri, 2014),
human-like autonomous car-following behavior learning (Zhu et al., 2018), dynamic tolling approach for traffic congestion alle-
viation (Chen et al., 2018), optimal fuel consumption control (Qi et al., 2019), etc.
In the literature, there are relatively few studies using RL to solve AIM problems. Isele et al. (2017) proposed a single-agent RL

approach to navigate one autonomous vehicle through the intersection. They only focus on one agent, but the traffic system is
essentially multi-agent. Chen et al. (2018) proposed an RL-based dynamic tolling approach for traffic congestion alleviation. How-
ever, their framework is targeted at macro-scopic problems over an entire traffic network, and thus cannot be applied to our problem.
In our paper, multi-agent reinforcement learning (MARL) is used to find the optimal sequential actions for each CAV (agent). To the
best of our knowledge, this paper is one of the first trials to use MARL to solve AIM problems.
Most MARL algorithms are derived from a model-free single-agent RL algorithm called Q-learning (Watkins and Dayan, 1992; Peng

and Williams, 1994; Littman, 2001). MARL methods can be mainly divided into two categories: centralized learning (CL) and de-
centralized learning (DL) (Busoniu et al., 2008). In CL, there is a central agent with powerful computing ability that learns the value
and/or policy of the multi-agent joint-action in the system. The main challenge of CL is the scalability issue caused by the exponential
growth of state space. In order to avoid the curse of dimensionality, in DL, each agent independently learns its own value of actions
and/or its own policy, treating other agents as part of the environment (Tan, 1993). However, DL introduces a new challenge for
MARL that the environment becomes non-stationary from the point of view of each agent, as it contains other agents who are
themselves learning, rolling out any convergence guarantees. Fortunately, substantial empirical evidence has shown that DL ap-
proach are often effective in practice (Matignon et al., 2012).
Decentralized coordination learning (DCL) has the potential to solve the environment nonstationarity problem in decentralized

MARL. The main idea of DCL is to capture local dependencies or coordination needs between the different agent in MAMDPs, and
allow the overall Q-function to be decomposed into local Q-functions that can be more easily optimized (Guestrin et al., 2002; Kok and
Vlassis, 2004). DCL is more effective for systems where the interaction between agents is sparse or loosely coupled. Melo and Veloso
(2011) modeled these systems as sparse-interaction multi-agent systems, Dec-SIMDPs. In addition to the theoretical contributions,
they also proposed a solution method that utilizes the particular structure of Dec-SIMDPs. Further on, instead of specifying the
coordination needs, Yu et al. (2015) proposed an algorithm to enable agents to learn efficient coordinated behaviors by exploiting
agent independence in loosely coupled multi-agent systems.
In AIM, the interaction between CAVs is also sparse and not coupled at every decision step but only in relatively infrequent

situations — CAVs only need to coordinate with the vehicles on their conflicting lanes when their moving intentions have potential
conflicts. Due to this property, DCL is applicable for the decision-making problem in AIM. However, a key difficulty of the AIM
problem is that the number of agents keeps changing over time, which makes it infeasible to directly apply DCL approaches to our
problem. Based on the characteristics of traffic flow, we propose several novel adaptations and customize a decentralized co-
ordination learning algorithm for AIM, called DCL-AIM algorithm. Details are shown in the following sections.

3. Problem statement

3.1. Problem description

Introduced by Dresner and Stone (2004), AIM is a multi-agent system, which applies a reservation-based protocol. In the protocol,
vehicle agents need to send a request to the intersection manager (IM) agent reserving the space-time occupancy of the intersection.
The space of the intersection is divided into cells, and the reservation is about the desired occupancy of cells along its trajectory for a
certain duration. There may be conflicts in all reservations, i.e. the same cells are requested at the same time. Then the IM agent needs
to decide whether to grant or reject the requested reservations. Different intersection control policies are employed. At each simu-
lated step, the employed policy determines cells the vehicle will occupy using the state of vehicle agents including the time and
velocity of arrival, vehicle size, etc. Our goal is to find an optimal control policy that minimizes intersection delay.
For the definition of delay of an intersection, we follow the same definition from the seminal work of Dresner and Stone (2004).

The number of all vehicles passing through an intersection in a period of time (e.g. one minute) is denoted as C. Assume that there are
no other vehicles on the road, vehicle vi would pass the intersection with the maximally allowable speed in timeOTi . However, due to
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the presence of other vehicles and the need of avoiding potential conflicts, the actual travel time of vi is ATi . Hence, the intersection
delay of an intersection (DoI) is:

=DoI AT OT( )
v C

i i
i (1)

However, the centralized optimization of reservation-based AIM is ultimately a dynamic traffic assignment problem and thus is
extremely challenging in the sense of computational tractability (Levin et al., 2017). In order to avoid the curse of dimensionality in
the centralized optimization, we propose a multi-agent formulation of the AIM problem, where instead of sending reservations to the
IM agent and relying on the optimal assignments of the IM agent, vehicle agents cooperate and learn a coordinated cell space-time
occupancy policy to minimize the defined delay.

3.2. A multi-agent formulation of AIM problem

Once entering the intersection area, without the control of IM agent, vehicle agents need to coordinate and negotiate with each
other about the space-time occupancy of the cells, so as to avoid collisions as the primary condition and minimize the delay. It is a
multi-agent sequential decision making problem, which can be modeled as multi-agent Markov decision process (MAMDP):

S … …n A A A r r r, , , , , , , , , , ,n n1 2 1 2 , where n is the number of agents, S is the finite set of environment states describing the
possible joint-states of all agents, Ai is the finite set of actions available to agents yielding the joint action set
A S A S= × …× ×A A , :n1 is the state transition function, and S A S× × = …r i n: , 1, ,i is the reward function.
In the following, the elements of MAMDP are introduced in the context of AIM.
• States: states are the information used to determine what happens next. Vehicle agents need to make a decision based on the

joint-states of each other. For each agent, the individual state is the combination of its current position, speed, moving intention and the
queue length of its current lane.
The intersection is divided into cells, where each cell has its own fixed coordinates. The position of a vehicle can be represented by

the cells it is occupying. A cell can only be occupied by one vehicle at the same time, and if any part of the cell is occupied, the state of
the cell will be regarded as occupied (see Fig. 1).
The speed of a vehicle is discretized into the number of cells per time step. The arc length of the turning movements is converted

to the length of the cell. This discretization is commonly used in the simulation of traffic flow using Cellular Automata model and has
been demonstrated to capture the characteristics of traffic flow well (Nagel and and Schreckenberg, 1992). The speed is related to the
length of cell and the step size of the simulation.

Example 1. A speed of 20 m/s is equal to 2 cell/step when the length of a cell is 5 m and the step size is 0.5 s.

The concept of desired cells is proposed to describe the moving intention of a vehicle at each time step which is related to its
destination, trajectory and current speed V. Vehicles desire to cross the intersection in the shortest amount of time, i.e. accelerate to
or maintain the speed limit and move towards destinations (this behavior is referred to as ‘keep going’ in this paper). However, for
safety reasons, it has to maintain a safe stopping distance, i.e. safety buffer. Therefore, the number of desired cells (DCs) ahead of
moving direction can be calculated as:

=
+ <

=
DCs

max V a V t a t V V
max V a V t V V

( /2 , ),
( /2 , ),

m

m

2 1
2
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Fig. 1. An illustration of cell occupancies.
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where a is the acceleration/deceleration value of the vehicle in unit of Vcell/step , m
2 is the speed limit, and V a/22 is the safe stopping

distance needed to avoid potential collisions. Step size t is set close to 0, and it takes at least one step for a vehicle to accelerate to
speed limit. If a cell is occupied and desired by the same vehicle, the cell will be regarded as the desired cell of this vehicle.

Example 2. For a vehicle with a current speed =V 4 cell/stepm , and acceleration =a 1 cell/step2, its =DCs 8 cells. For a vehicle with
a speed of 3 cell/step, its = =DCs 4.5 cells 5 cells.

Example 3. Let the intersection depicted in Fig. 1 be represented as a ×24 24 two-dimensional array Se. Assume that the current
speed of vehicle v3 is =V 4 cell/stepm and acceleration =a 2 cell/step2, and there are 10 vehicles queueing on lane 11. The individual
state (i.e. the position, speed, moving intention and queue length) of v3 can be represented as:

S S{ [3: 8][17: 20], 4 cell/step, [9: 12][17: 20], 10 veh}e e

• Actions: vehicle agents execute actions based on the states they observed. The actions of vehicles are their state of motion.
Generally, the state of motion of a vehicle can be expressed in term of its speed (V V, , m0 ) and acceleration/deceleration (± a, 0).
The choice of an action is constrained by the relationship between speed and acceleration/deceleration and the range of speed:
V V[ , ]m0 (see Table 1).
The global state and action S A( , ) is an aggregation of the individual states and actions s a( , )i i .
• Rewards: scalar rewards are used to indicate how well agents are doing at time step t in achieving the goal. In order to discourage

congestion, our objective is to minimize the intersection delay, so the negative of delay (Eq. 1) is set as a reward. Assuming that the
distance traveled by vehicle vi at time step t is Li, then the optimal time required to pass the distance is L V/i m, so the reward at time
step t can be calculated as:

=r S A t L V( , ) ( / )
v C

i m
i (3)

• State transition: the states of vehicles are transited according to the law of motion.
For the cooperative MAMDP of AIM, our objective is to find a joint-policy S A: which maximizes the total rewards of all

agents. can maximize the long-term discounted reward for all agents, and it can be split into n component policies for each agent
S A:i i with = …( , , )n1 . One way to find the optimal policy is by computing an optimal joint-action value function:

=Q S A max Q S A* ( , ) ( , ) (4)

Theoretically, Eq. (4) can be solved through the use of dynamic programming techniques. By iterating, evaluating and calculating
value functions, it is possible to find the optimal policies. However, it is almost impossible to compute the joint-action value function
for a system like AIM within acceptable execution time because the S A( , ) pairs in AIM system are enormous. In multi-agent decision
making problem, each agent adds its own variables to the joint state-action space which leads to the complexity of solving MAMDPs
being exponential in the number of agents. However, since the interaction between CAVs in AIM is sparse and not coupled at every
decision step, but only in relatively infrequent situations, with the new MAMDP formulation, we are able to decompose the original
centralized optimization into a distributed one. This leaves us the possibility of using a decentralized learning framework towards
solving the AIM problem. In the following, we adapt the decentralized coordination learning (DCL) framework into solving our
formulated multi-agent AIM problem.

4. DCL-AIM: decentralized coordination learning of AIM

Instead of learning an optimal joint policy, agents in DCL learn and update the coordinated policy. DCL is driven by the fact that
many multi-agent systems can exhibit a large amount of context-specific independence so that a general MAMDP problem can be
decomposed into sub-problems which are easier to solve (Roth et al., 2007). One such context-specific independent state of a vehicle

Table 1
Action choices of vehicles.

Current speed V0 V V{ , , }m1 1 Vm
Action choices +a{ , 0} ±a{ , 0} a{ , 0}

Is there interaction between agents?

Act independently Coordinate

no yes

Fig. 2. Procedure of coordination learning.
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agent in AIM is that there are no vehicles on the conflicting lanes. The optimal action in this state is easier to determine, that is, the
vehicle acts independently, accelerates to or maintains the maximum speed.
The primary task of coordination learning algorithms is to train the agents to learn where and how to coordinate (Yu et al., 2015).

At each learning step, the main procedure of coordination learning is shown in Fig. 2.
In DCL, the large-scale environment state space is divided into two parts: coordinated states, in which agents need to coordinate

their actions so that the decision-making process can be improved; independent states, in which agents can act independently and
coordination with other agents does not improve the decision-making process.
In AIM, for an agent i, its independent states are the states that its desired cells are not occupied and there is no overlap (even a

point) with the occupying or desired cells of other vehicles. The rest are the states that need to be coordinated.

Example 4. Consider the state depicted in Fig. 1, in the current state, vehicle v3 is independent of other vehicles, thus no coordination
is needed; vehicle v1 and vehicle v2 are in a coordinated state. The overlap of desired cells indicates that collisions may occur if
vehicles v1 and v2 both take independent actions. Coordination is needed between vehicles v1 and v2.

We define coordinated joint-actions as the available actions that can be taken in coordinated states, excluding the joint-actions that
would cause any conflicts.

Example 5. For a coordination-needed state shown in Fig. 3, the coordinated joint-actions are Actions 1, 2 and 3, while Action 4 is
eliminated. If these two vehicles both choose ‘keep going’ action, a collision cannot be avoided at the next state, because the safe
stopping distance cannot be guaranteed.

Based on this idea, an algorithm DCL-AIM (Algorithms 1 and 2) is proposed to solve the decision-making problem of AIM by
explicitly identifying and dynamically adapting agent coordination needs during the learning process.

Algorithm 1. DCL-AIM

Fig. 3. A coordination needed state and potential joint-actions involving two CAVs.
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Algorithm 2. LEARNING ALGORITHM FOR AGENT i

In DCL-AIM algorithm, vehicles in the same direction from the same lane all inherit and contribute to learning and updating the
same Q-function. Corresponding to the decomposition of state, Q-function of agent i also has two parts: a single-action value table
Q s a( , )i i i and a joint-action value table Q s a( , )I

K K for states which require coordination. At independent states, agents will act in-
dependently and choose actions based on the optimal Q-function Qi . At coordinated states, CAVs will choose actions from joint
optimal Q-function Q s a( , )I

K K .
The decomposition relies on the assumption that in any given state, the agents are either independent or can share state in-

formation, as such agents can use state information from the other agents in the coordinated states to choose its actions. With the
advanced sensors and the V2V communication technologies, each CAV is able to perceive unambiguously its own position in the
environment. Also, when agents are simultaneously present in the coordination needed area, namely coordinated states, they are able
to sense each other and thus can perceive their joint state clearly.
At time step t, the global reward corresponding to Eq. (3) is calculated in Eq. (5).

=
=

r S A wt( , )
i

N

i
1

t

(5)

where N t is number of CAVs present at time t. wti is the delay of agent i at step t. Since the vehicles are always moving in and out, N t

changes over time.
Correspondingly, when an agent i is in an independent state at time t, its individual reward is:

=r s a wt( , )i i i (6)

Otherwise, when agent i is in a coordinated state and is in subset = …K i i{ , , }h1 , its joint-reward is:

=
=

r s a wt( , )K K
i

h

i
1 (7)

The learning progress begins with an initialization of the action value functions and followed by the optimal policy learning
process. In order to guarantee that the sequence Qt converges to Q , the agents need to keep trying all actions in all states with
nonzero probability. The trade-off between exploitation and exploration guarantees the convergence. greedy exploration is a
widely used approach. At each step, the agent can choose a random action with probability (0, 1), and the greedy action with
probability (1 ).
Each episode in the algorithm simulates a possible process of the vehicles crossing the intersection, and ends when all CAVs exit

the intersection, followed by a reset to the initial state. The DCL-AIM algorithm estimates all the possibilities of how CAVs cross the
intersection, and then outputs the best decisions for the actual operation of CAVs.
The main tasks of DCL-AIM algorithm at every time step t are as follows:

• Update the environment.
The environment will be updated based on the actions of the current agents and the new agents just arrived. Function

env update. () returns the new occupancy state of the intersection and env agents. () gives out the presence of agents including
local states. In addition, the environment will be reset to the same initial state using the function env reset. () at the end of each
episode.
The environment class also includes the functions of rewards: env rewards. () and observations: env observations. (), which are in
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charge of emitting rewards and observations to agents based on the environment states resulted from their actions.
• Update the Q-values.
At time step t, if agent i is not involved in any interaction, and moves from an independent state si to another independent state s i,
the independent Q-values can be estimated by the standard Q-learning operation (Watkins and Dayan, 1992), shown in Eq. (8).

= + ++Q s a Q s a r s a Q s a Q s a( , ) ( , ) [ ( , ) max ( , ) ( , )]e e
a A

e e1 (8)

where is the learning rate and specifies how far the current estimate Q s a( , )e at the eth update is adjusted toward the update
target f s a s Q s a( , , )max ( , )s S a A .
Otherwise, let K denote the subset of all h agents interacting with agent i at time step t.

Case 1, agent i moves from a coordinated state sK to an independent state si. The joint Q-values are updated by:

= + +
=

Q s a Q s a r s a Q s a( , ) (1 ) ( , ) [ ( , ) max ( , )]I
K K

I
K K

i

h

i K K
a

i i i
1 i (9)

Case 2, conversely, agent imoves from an independent state si to a coordinated state sK . The independent Q-values are updated
by:

= + +Q s a Q s a r s a
h

Q s a( , ) (1 ) ( , ) [ ( , ) 1 max ( , )]i i i i i i i i i
a

I
K K

K (10)

That is, each agent is rewarded with the same fraction of the expected future discounted reward from the resulting coordinated
state. This essentially implies that each agent contributes equally to the coordination.
Case 3, agent i moves from a coordinated state sK to another coordinated state s K . The update of Q-values of Q s a( , )I

K K also
follows the operation shown in Eq. (8) according to the joint-rewards.
QUpdate() is used to compactly denote the Q-values update operation described above.

5. Simulations and results

DCL-AIM algorithm has three main components: intersection environment, vehicle generation and Q-table learning. The specific
details of these three parts in the simulation implementation are described in the following subsections. The results of the simulations
are then analyzed and presented.

5.1. A 4-way-6-lane intersection

All simulations are conducted using Python 3.6, and run on a computer with a i7-7700 CPU @3.60 GHz, 8.00 GB RAM and 64-bit
Operating Windows System. A typical 4-way-6-lane intersection configuration is simulated. The movements of CAVs are set to strictly
follow the lane instruction, i.e. the trajectories of vehicles from different lanes are settled.
The control range of the intersection is set as 210 m within the effective communication range of dedicated short range

1

2

3

4 5 6

7

8

9

101112
Trajectory

Desired cells

Overlapped cells

Occupying cells

v2

v
3

Intersection area

Fig. 4. Different discretization levels of intersection area.

Y. Wu, et al. Transportation Research Part C 103 (2019) 246–260

253



communication (DSRC) technology (Kenney, 2011). The width of a lane is 3.5 m, the speed limit is set as 7 m/s, the simulation step
size is 0.5 s.
In AIM, the intersection area is discretized into cells, the length of the cell represents the level of discretization, and two different

levels of discretization are simulated, as shown in Fig. 4.
Discretization level 1.The intersection area is divided into ×6 6 cells, each cell has the length/width of m3.5 . The length of an

CAV is set less than 3.5 m, so the occupancy of a vehicle is at least 1 cell, the specific occupancy is related to its trajectory, such as
vehicle v1 shown in Fig. 4 (left) is occupying more than one cells. The maximum moving distance of each CAV in each decision step is

× =7 m/s 0.5 s 3.5 m (the length of one cell), the set of actions of each agent is represented as =A {0, 1} accordingly. ‘0’ represents
the actions of decelerating or waiting, ‘1’ represents the action of accelerating or keeping going. The arc length of the turning
movement is converted to the length of the cell. The allowable acceleration/deceleration is set as ±{ 0.5, 0}(cell/step )2 .

Example 6. For the two vehicles in a coordinated state depicted in Fig. 5, in which the cells are numbered to refer to cell coordinates.
At the coordination-needed state S t( ), they choose the coordinated actions of a decelerating a keep going{ : 0 , : 1 }1 2 , and move to
the next state +S t( 1). At +t 1, parts of cell 2 is occupied by vehicle v1 ( =V t a t cell0.5 0.75v

2
1 ), while the rest of cell 2 is desired

by vehicle v1 ( =a t cell0.5 0.252 ). In this case, we still use cell 1 to represent the current position of vehicle v1, and cell 2 is used to
represent its moving intention. The state of vehicle v1 at +t 1 can be represented as cell cell step cell q{ 1, 0.5 / , 2, }1 . Similarly, the state
of vehicle v cell cell step cell q: { 6, 1 / , 3, 2}2 .

Discretization level 2. The intersection area is divided into ×24 24 cells, each cell having the length/width of 0.875 m. The
length of an CAV is set as 4.5 m and width is 1.8 m, so the occupancy of a vehicle is at least ×6 3 cells, and the specific occupancy is
related to its trajectory, for example, a turning vehicle v1 in Fig. 4 (right) is occupying ×6 5 cells. The speed limit is equal to

cell step4 / , then the speed of a vehicle V {0, 1, 2, 3, 4}(cell/step). In order to provide better passenger experience, the allowable
acceleration/deceleration is set as ±{ 1, 0}(cell/step )2 .
The objective of the decision model of CAVs is to maximize the long-term rewards. During the learning process, the coordination

needs are explicitly identified and dynamically adapted, collision-free is guaranteed by the coordinated joint-actions, and the reward
function minimizes delay. As a result, the optimal policy given by the model equals the minimization of the intersection delay and is
collision-free.

5.2. Vehicle generation

In order to simulate the traffic flow more realistically, vehicles are generated randomly using Poisson distribution. Each lane has
different vehicle arriving rate , and intersection traffic generating rate is the sum of each lane. A Poisson Process is a kind of Markov
Chain process, and has unique characteristics:
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• the number of arrivals in non-overlapping intervals are independent, i.e., for every integer = …m 2, 3, and time points
= < < < … <t t t t0 m0 1 2 , the number of vehicle arrivals of the intervals N t t N t t N t t(( , ]), (( , ]), ···, (( , ])m m0 1 1 2 1 are independent.

• for any time t and positive number t , the probability distribution of +N t t t(( , ]) (the number of vehicle arrivals occurring
between t and +t t) depends only on the interval length t , and not on the time t.
• as +t 0 , the probability of at least one vehicle arrives, is proportional to the interval length t :

+ = + +P N t t t t o t t{ (( , ]) 1} ( ), 0 (11)

• the probability of two or more vehicles arrive in an interval of length +t 0 is negligible:

+ = +P N t t t o t t{ (( , ]) 2} ( ), 0 (12)

With the characteristics described above, we use the probability of at least one vehicle arrives to generate vehicles at each
simulation step ( =t s0.5 ). The generating rule is as following:

+ >if P N t t t random then v generated{ (( , ]) 1} (0, 1), i (13)

where, random (0, 1) is a pseudo-random number in v(0, 1), i is the ith generated vehicle at time t.
Three examples of traffic in-flow distribution are shown in Fig. 6. ITGR represents intersection traffic generating rate. vph re-

presents the number of arriving vehicles per hour. In this way, the uniform distribution of traffic flow is avoided and more realistic
traffic flows are generated.

5.3. Learning performance

The setting of parameters affects the performance of the Q-values learning performance. The parameter setting in the experiment
is shown in Table 2.
The learning rate affects how quickly the model can converge. However, higher learning rate means higher loss in the learning

process, while lower learning rate means the longer convergence runtime. After comparing the performance of = 0.01, 0.05, 0.1, we
set = 0.05. An example of the convergence of DCL-AIM algorithm in two discretization level experiments is shown in Fig. 7.
As can be seen from Fig. 7, the episodic reward is well converged after approximately 5000 episodes for each discretization level

experiment, and it also converges well in the case of heavy traffic. Note that the fluctuations in reward afterwards are caused by the
greedy policy.
The construction of reward function also has a significant influence on the performance and convergence of DCL-AIM algorithm.

Fig. 8 (left) shows a convergence example (discretization level 1 experiment) in which the agents update their Q-values only de-
pending on individual rewards in all states, while Fig. 8 (right) shows an example in which Q-values are updated according to QUpdate
(). When updating and learning with individual rewards in all states, the algorithm still converges, but it will converge to a poorer
policy (less episodic rewards, which means higher delay) compared to the policy converged using QUpdate(). The advantage of DCL-

Fig. 6. Traffic in-flow distribution.

Table 2
Parameter settings for DCL-AIM algorithm.

Greedy policy: epsilon 0.9
Learning rate: alpha 0.05
Discount factor: gamma 0.9
Step size: t 0.5
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AIM algorithm is that it can effectively decompose the difficult decision-making problem into sub-problems without losing too much
global performance.

5.4. Effectiveness comparison

This section focuses on comparing the performance of FCFS-AIM and the proposed multi-agent coordination learning based AIM
(DCL-AIM) after the Q-values are trained and learned, using the data of discretization level 1 experiment. In addition, Longest-Queue-
First policy (LQF-AIM) and the traditional signal control (labeled Signal in Fig. 9) based on the Webster’s method (Webster, 1958) are
set as benchmarks. It is worth pointing out that after the policy is trained and learnt, the policy obtained by DCL-AIM algorithm can be
read and executed in less than 10ms at each decision step (much less than the step size) for real-world scale problems, just as other
rule-based policies (FCFS, LQF and Signal).
For all control policies, for the sake of fairness, the traffic in-flow and time horizon are the same. The major road - minor road

intersecting situations are simulated. The traffic flow on the major road is twice that of the minor road. And, the through-flow is twice
the turning-flow on each approach. Different traffic scenarios with different traffic generating rate are simulated. The comparison of
average delay per vehicle is shown in Fig. 9, where traffic generating rate is the through-flow rate of the major road. Because the traffic
flow in this paper is randomly generated, in order to eliminate the impact of the randomness on the results when comparing the
effectiveness of the policies, for each traffic generating rate scenario, the simulations were conducted 100 times. The average delay
(s veh/ ) with 95% confidence interval of the 100 simulation runs are also shown in Fig. 9.
To compare the stability of different methods, we show the results across different simulation runs, as shown in Fig. 10. Under the

same traffic generation rate scenarios, the intersection delay of each simulation is different. Traffic dynamics have the greatest impact
on FCFS policy. It is because that the priority of FCFS is assigned based on the arrival time of vehicles. The amplitude of fluctuation
shown in Fig. 10 reflects that FCFS-AIM is not as good as DCL-AIM in dealing with uncertainty. DCL-AIM addresses the uncertainty
problem through the trade-off between exploration and exploitation.
The experimental results show that DCL-AIM significantly outperforms FCFS-AIM under different random traffic conditions. Safety

buffer is an important concept in FCFS-AIM (Dresner, 2009), which is used to enhance the safety of the control. The less buffer the less
delay, so we set the extra time safety buffer as s0 in the comparison. In our approach, the front and rear collisions are eliminated by the
concept of occupying cells and the desired cells, DCL-AIM system does not need additional safety enhancements, the coordinated
actions in DCL-AIM algorithm eliminate the conflicting situations.
From the perspective of system optimization, at a certain time point t, it seems better to give higher priority for the longer queue,

Fig. 7. An example of convergence of DCL-AIM algorithm in two discretization level experiments.

Fig. 8. Convergence of individual rewards (left), coordination learning (right).
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Fig. 9. Average delay comparison.

Fig. 10. Fluctuation of intersection delay of 100 simulation runs.
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which is why the longer queue first (LQF) policy is often applied to intersection management, especially in the adaptive signal
control. However, in the long run, it may not be the best choice.
From Fig. 9 and Fig. 10, we can see that the Webster’s signal control policy is not dominant in the management of CAVs. The

major reason for the higher delay of signal control (even when the traffic flow is relatively light) is that it cannot make good use of the
space-time resources of the intersection. In the signal control, only up to two streams can be discharged simultaneously, while the
spatiotemporal resources in other directions are “wasted”. Another characteristic of signal control can also be seen from the figures,
that is, its standard deviation is relatively small, indicating that the performance of signal control is little affected by the randomness
of traffic flow. This is why signal control may be superior to FCFS-AIM in some cases, which can also be seen in Fig. 9. It is worth
mentioning that the signal control compared in this paper is not adaptive. The adaptive and optimal signal control for CAVs is another
research topic that has been studied extensively in the literature but out of the scope of this paper.
As the traffic flow approaches the intersection capacity, the intersection delay increases dramatically, and the effectiveness of all

control policies begins to decline, especially FCFS-AIM policy, while DCL-AIM consistently performs the best under all the traffic
generating rates. The main reason for the decline in effectiveness is the limited availability of the space-time cells of the intersection.
In order to show how the spatiotemporal resources affect the performance of the control policies, we have designed some scenarios
specifically.

Scenario 1. Lane 2 is congested, with the traffic in-flow rate 3000 veh/h, while the arriving vehicles on lane 5, lane 8 and lane 11
are randomly generated as in-flow rate 1500 veh/h. No vehicles are generated on other lanes.

Scenario 2. Lane 2 and lane 8 are congested, with the traffic in-flow rate 3000 veh/h, while the arriving vehicles on other lanes are
randomly generated as 1000 veh/h.

Scenario 3. All of Lane 2, lane 5, Lane 8 and Lane 11 are congested, with the traffic in-flow rate 3000 veh/h. No vehicles are
generated on other lanes.
For each scenario, we run the simulation 20 times, the averaged intersection delay of the policies is shown in Table 3.
For an asymmetrical traffic flow designed in Scenario 1, there are still spatiotemporal resources available in the other three

directions, so all the three AIM control policies can manage the intersection well. While, for Scenario 2 and 3 where congestion is
developing in all directions, there are relatively less spatiotemporal resources can be used, it is difficult for all three strategies to
handle. However, it is promising to see that DCL-AIM algorithm still can produce better control policy.
Fig. 11 shows the step delay comparison of the three control policies in a 2-min simulation of Scenario 3. As can be seen, DCL-AIM

maintains a better performance at every time step and needs less time to evacuate the congestion.

5.5. Results of discretization level 2

The proposed solution technique is readily applicable to different levels of discretization. The intersection delay comparison
results of discretization level 2 are shown in Fig. 12. From the comparison results and trends shown in Fig. 12, we can draw the same
conclusions as the experiment of discretization level 1, that the proposed DCL-AIM algorithm can learn a better policy and the FCFS-AIM
policy is most affected by the randomness of traffic flow.

6. Conclusions

AIM is an alternative intersection control tailored for CAVs. With the wireless communication technologies and advanced
computer control systems, CAVs have the ability to benefit the traffic system substantially. Although CAVs in AIM system can be
programmed with behaviors designed in advance, for example FCFS, it is often necessary that they learn new behaviors online, such
that the performance of the agent and the whole multi-agent traffic system gradually improves. In this paper, a multi-agent re-
inforcement learning approach is proposed to learn the optimal policy from the real-time environment states.
We model the crossing processes of CAVs as multi-agent MDPs, in which vehicle agents cooperate to maximize rewards with

collision-free constraints. The optimal sequential actions of vehicles can be given by the proposed DCL-AIM algorithm. The main feature
of the proposed approach is to explicitly identify and dynamically adapt agent coordination needs during the learning process so that
the curse of dimensionality and environment nonstationarity problems in multi-agent learning can be alleviated.
A variety of traffic conditions are simulated within a typical 4-way-6-lane intersection, demonstrating the effectiveness of the

proposed model. In order to more realistically simulate the traffic flow, vehicles are randomly generated rather than uniformly
distributed. The comparative analysis is conducted between the DCL-AIM and FCFS-AIM, with LQF policy and the Webster’s signal
control as benchmarks. Results shows that the optimal sequential decisions from DCL-AIM outperform the other control policies.

Table 3
Comparison of intersection delays.

Scenario Intersection delay (s)

FCFS LQF DCL

1 333.5 297.5 111.5
2 3589.6 2752.4 2582.2
3 3585.2 3036.4 2542.1
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In this paper, the solution algorithms are based on the assumptions that the environment is fully observable in the case of an
isolated intersection. In the future, we will try to extend current work to a partially observable traffic environment and solve a
network-wide intersection management problem of CAVs.
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