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Abstract—For both the traditional street-hailing taxi industry
and the recently emerged on-line ride-hailing, it has been a
major challenge to improve the ride-hailing marketplace effi-
ciency due to spatio-temporal imbalance between the supply and
demand, among other factors. Despite the numerous approaches
to improve marketplace efficiency using pricing and dispatch
strategies, they usually optimize pricing or dispatch separately.
In this paper, we show that these two processes are in fact
intrinsically interrelated. Motivated by this observation, we make
an attempt to simultaneously optimize pricing and dispatch
strategies. However, such a joint optimization is extremely chal-
lenging due to the inherent huge scale and lack of a uniform
model of the problem. To handle the high complexity brought by
the new problem, we propose InBEDE (Integrating contextual
Bandit with tEmporal DiffErence learning), a learning frame-
work where pricing strategies are learned via a contextual bandit
algorithm, and the dispatch strategies are optimized with the help
of temporal difference learning. The two learning components
proceed in a mutual bootstrapping manner, in the sense that the
policy evaluations of the two components are inter-dependent.
Evaluated with real-world datasets of two Chinese cities from
Didi Chuxing, an online ride-hailing platform, we show that the
market efficiency of the ride-hailing platform can be significantly
improved using InBEDE.

Index Terms—Ride-hailing platform, Joint pricing and dis-
patch, Reinforcement learning

I. INTRODUCTION

In the taxi industry, the problem of spatio-temporally im-

balanced taxi supply and trip demand has been a major

obstacle of market efficiency for decades. When demand is

higher than supply (e.g., during peak hours or in central

business areas), passengers suffer from long response time of

trip requests, while in the opposite case, drivers bare losses

from idling around without fulfilling passenger requests. The

rapid revolution of the taxi industry from street hailing to

on-line ride-hailing platforms such as Uber, Lyft and Didi

Chuxing has provided the technological levers to alleviate

the supply-demand imbalance. However, tackling this problem

still presents a significant challenge.

This work was done when Haipeng Chen was an intern at Didi Chuxing.

Numerous approaches have been proposed to mitigate the

problem and thus improve ride-hailing market efficiency. One

thread of approaches study the question that, when a passenger

inputs the desired origin and destination from the ride-hailing

APP (a status called “request”), what price should be quoted

to that request. This thread of approaches utilize dynamic

pricing as a leverage to coordinate supply and demand [1]–[4].

Another thread of methods focus on the question that, when

a passenger finally sends out the request (a status referred

to as “order”), which driver will be dispatched to the order.

These methods evolve from greedy (local optimal) approaches

which find the nearest driver to a passenger [5], [6], to globally

optimal dispatch strategies with short-term [7] or long-term

goals [8], [9]. One major limitation of these approaches is that

they only optimize pricing and dispatch strategies separately.

We will show that, taking the long-term effect into con-

sideration, pricing strategies and dispatch strategies are not

independent, but are in fact interrelated with each other. To

this end, we propose a joint dynamic pricing and dispatch

framework for the on-line ride-hailing platform. One recent

approach [10] studies joint pricing and dispatch in ride-hailing

platforms. However, it only optimizes the length of time

window for collecting orders from customers, not exactly the

dispatch process. To the best of our knowledge, this is the

first paper in the literature that jointly optimizes pricing and

dispatch in an explicit way.

Reinforcement learning (RL) [11] has been proven to be

effective in large-scale sequential planning problems, where

interaction with the environment is usually described as a

Markov Decision Process (MDP). However, we will show

that, existing RL algorithms (e.g., DQN [12], A3C [13],

DDPG [14] and TRPO [15]) cannot be directly applied in

our problem, since there is no uniform way of defining the

“state” and “action” for the consecutive pricing and dispatch

that satisfies the real-world needs of pricing and dispatch

tasks. To handle this new challenge, we propose a novel

learning framework, InBEDE (Integrated contextual Bandit

and tEmporal DifferencE learning, pronounced “in-bee-dee”)
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towards the joint pricing and dispatch problem. The contextual

bandit component is deployed at each request and updated on
the go, while the TD learning component is utilized to estimate

the future effect of a pricing strategy as well as a dispatch

strategy, and is updated at a lower frequency, e.g., at the end
of a day. The two key components (i.e., contextual bandit

and temporal difference learning) of InBEDE are trained in a

mutually bootstrapping fashion, where the policy evaluations

of two components are dependent on one another.

Our key contributions are summarized as follows:

• First, we make the first attempt in the literature to provide

a uniform optimization framework for joint pricing and

dispatch in on-line ride-hailing platforms.

• Second, we propose a novel solution algorithm, InBEDE,

to solve the formulated joint pricing and dispatch prob-

lem. InBEDE integrates the training of contextual bandit

with temporal difference learning in a mutually bootstrap-

ping manner.

• Lastly, we conduct extensive experimental evaluations of

our proposed framework using real-world datasets of two

cities in China, provided by a ride-hailing platform, Didi

Chuxing. The results show that by using our proposed

approach, the system efficiency (in terms of total driver

income and customer payment) of the ride-hailing plat-

form has been significantly improved.

The remainder of the paper is as follows. Section II dis-

cusses related work. Section III introduces an overview of pric-

ing and dispatch in ride-hailing platforms. Section IV describes

the problem formulation. The solution algorithm is presented

in Section V, followed by the experimental evaluations in

Section VI. We conclude the paper in Section VII.

II. RELATED WORK

A. Pricing and Dispatch in the Taxi Industry

Pricing has been adopted as a leverage to coordinate travel

demand and supply and improve the ride-hailing system rev-

enue. Prior works provide analytical studies over linear and

non-linear pricing [16], static and dynamic pricing [17], or

joint waging (to drivers) and pricing problem [18]. Some other

works address the pricing problem from an optimization point

of view and formulate the pricing problem as an MDP [1],

[2]. One major limitation in these works is that the platform

uses over-simplified dispatch models such as a queueing

model [17], [18] or that supply is always sufficient [2].

At the same time, a variety of approaches have been

proposed to address the demand-supply imbalance from the

perspective of order dispatch. This thread of approaches fo-

cus on designing optimal matching algorithms among orders

(demand) and drivers (supply). They evolve from greedy

approaches which find the nearest driver to a passenger [5],

or matching drivers with passengers on a first-come-first-serve

basis [6], to globally optimized dispatch strategies with either

short-term [7] or long-term goals [8], [9], [19], [20]. These

approaches usually neglect the pricing strategies and assume

that the prices for the travel requests are fixed.

One recent approach [10] studies both pricing and dispatch

in ride-hailing platforms. However, it only optimizes the length

of time window for collecting orders from customers, not

exactly the dispatch process. To the best of our knowledge, this

is the first paper that jointly optimizes pricing and dispatch.

B. Multi-Armed Bandit and TD Learning

Over the past few decades, there have been extensive

studies on multi-armed bandit problems. In multi-armed bandit

problems, a set of actions need to be sequentially selected

in order to maximize the expected reward, where rewards of

different actions are partially known and may become better

understood by exploring the actions. Both optimal [21], [22]

and approximate (while scalable) [23], [24] algorithms have

been developed to solve the problems. In most algorithms

(e.g., UCB1 [23]), action selection is usually performed in

a way that trades-off exploiting the current optimal action and

exploring potentially better actions. More recently, researchers

have been interested in a more complicated contextual ban-
dit problem (also referred to as associate search in [25])

where the reward of an action depends on the context of the

problem. Both linear (e.g., LinUCB [26], Linear Thompson

Sampling [27]) and non-linear methods (e.g., GPUCB [28],

KernelUCB [29], NeuralBandit [30]) are proposed to solve

this class of problems. In linear methods, the expected reward

is represented as a linear function of a context-action pair,

while in non-linear methods, the authors utilize either a

kernelized [29] or a neural network representation [30] of the

expected reward. More recently, bandit algorithms have been

integrated with collaborative filtering and clustering [31], [32]

in networked scenarios.

Despite its theoretical and practical advantages in solving

online learning problems, traditional multi-armed bandit algo-

rithms are usually limited to one-shot decision settings. On

the other hand, TD learning [33] is a family of reinforcement

learning methods for sequential decision making problems,

where the core idea is to bootstrap learning of value function

based on current estimate of the value function. Opposed to

Monte Carlo methods which can update the value function

only after getting a complete trajectory of training samples,

TD learning has the advantage of learning in a fully online

manner and thus has been widely adopted in various prominent

RL approaches such as DQN [12], A3C [13], DDPG [14] and

AlphaGo [34]. In the following, we will show that due to the

inherent huge scale and lack of a uniform problem model, a

single RL framework such as contextual bandit algorithm and

TD learning cannot be directly applied in our problem.

III. OVERVIEW OF PRICING AND DISPATCH

Figure 1 illustrates the pricing and dispatch process of an

on-line ride-hailing system. By “request”, we refer to the status

where a passenger has input the trip origin and destination,

but has not sent out the request. Upon the emergence of a

trip request, the system quotes an estimated price to it. After

the price is revealed, the passenger decides whether or not

to submit the trip request based on his or her willingness to
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pay. Once submitted, the status of the request changes to an

“order”, which is put in the system’s order list and is ready to

be matched to a vacant driver. In practice, the order dispatch

proceeds in a batch manner, e.g., with a time window of a

few seconds. Within this time window, a set of requests arrive,

among which a subset of them turn into a list of orders, and

then the system performs a matching between the orders and

drivers. This process repeats throughout a day.

Fig. 1. Joint request pricing and order dispatch overview

A pricing strategy consists of two components, 1) a base

price which is a fixed price determined by the travel distance

and travel time, etc, and 2) a pricing factor which is a

multiplication over the base price. Note that in our setting,

the base price is an external input, and our approach only

considers the pricing factors. One key idea of our approach is

that, instead of focusing on the immediate effect of a pricing

strategy, we also consider its future effects. Intuitively, we

encourage, with a reduced price, the conversion to orders of

requests from a ’cold’ area to a ’hot’ area.1 Later, we will

show how to quantitatively characterize this property. After a

driver is assigned to the passenger and drives the passenger

to a hot area, the driver is more likely to be able to fulfill

another order immediately. This mitigates the supply-demand

imbalance, while improving the operational efficiency of the

platform. As we can see, the future effect of a request pricing

strategy is reflected in the repositioning of a driver, from its

original position at the current time to its destination at a

future time. Thus, the future effect of repositioning the driver

is highly dependent on the dispatch strategies, making it sub-

optimal to optimize pricing without considering dispatching.

A dispatch strategy is usually a matching algorithm between

the orders and drivers. As shown in [8], [9], [19], an optimal

dispatch strategy should also consider the future effect of a

matching, which assigns higher priorities to a matching with

higher immediate and future potential values. Similar to the

pricing of a request, the future effect of a matching is also

reflected in the repositioning of a driver. Moreover, the future

spatio-temporal values of the drivers are also highly dependent

on the pricing strategies, in the sense that pricing strategies

will affect the demand distribution of the ride-hailing system.

Thus, it is sub-optimal to perform dispatch without taking

1A “cold (hot)” area has less (more) demand than supply.

into account the pricing strategies. In this paper, we introduce

a novel dynamic joint request pricing and order dispatch

framework to further mitigate the supply-demand imbalance,

and thus to improve efficiency of the ride-hailing platform.

IV. JOINT PRICING AND DISPATCH

As described in Section III, there are two stages for a newly

arrived travel request, namely request pricing (or equivalently,

order generation) and order dispatch. In this section, we intro-

duce a joint pricing and dispatch framework, which consists

of distributed pricing and centralized dispatch.

A. Distributed Request Pricing

In practice, whenever a passenger inputs the origin and

destination of a trip request (i.e., a request emerges), the ride-

hailing system needs to set a price to the request immediately

(in a scale of milliseconds). As a result, it is impractical

to globally optimize the pricing strategies for all the current

requests due to the time needed to collect all the requests’ in-

formation as well as strategy calculation. Instead, we choose to

optimize the price of each request individually, thus allowing

a distributed and scalable implementation.

Typically, a request i is characterized by a d-dimensional

vector of contextual features xi = 〈xij〉, including the time

ti it emerges from the on-demand ride-hailing platform, its

original location li and destination l′i, the estimated base price

pi (determined by the estimated trip distance and time, etc.)

of the trip, the distance and estimated travel time of the trip,

and historical request conversion rate of location and time,

etc. Note that we do not use any customer-specific features

in our framework. On top of the base price pi, we impose a

pricing factor ai ∈ A to influence the probability f(xi, ai)
of the request converting into an order, which we refer to as

request conversion rate (CR). Here A is the feasible space of

the price factors. In practice, we consider a set of discretized

price factors, e.g., A = {0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15}.
Intuitively, f(xi, ai) is a non-increasing function of ai, i.e.,

when price increases, the probability of a request converting

into an order decreases, and vice versa. Given the pricing

strategy ai to a request i, if the converted order is dispatched,

we define the immediate reward as the expected driver income

of the request:

r(xi, ai) = f(xi, ai)(piai − piβ), (1)

where β is a fixed number denoting the percentage of revenue

shared by the ride-hailing platform. Note that in the current

setting, we characterize system efficiency as the total drive

income of a day on the ride-hailing platform. It is worth

mentioning that our framework can be generally adapted to

other system efficiency metrics.

Future effect. In addition to the immediate reward, we also

take into account the future effect of the current pricing

strategy ai to a request i. When a request transforms into an

order, the order dispatch system will dispatch a certain driver

j to the order. After the dispatch, the driver starts from the

original place lj , goes to the order’s (which is transformed
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from the request i) original place li, picks up the passenger

and drives the passenger to the destination l′i. Consequently,

this incurs the reposition of the driver j from lj to l′i.

B. Global Order Dispatch Optimization

Before we discuss future effects of a request pricing strategy

in detail, we first introduce the order dispatch component, to

which the driver value function is a key element.

1) Value Function and Pseudo-MDP of a Driver: To ap-

proximate the spatio-temporal value of a driver at a certain

location and time, we adapt the work of [8], [9], and define

a “pseudo-MDP” for each driver. We call it a “pseudo-MPD”

because the value of a driver does not only dependent on the

dispatch action of the driver, but also on the pricing strategies

of requests. In the pseudo-MDP, the state sj = (lj , tj) of a

driver j consists of the location lj and time tj of the driver.

Note that the state sj of a driver is different from the contextual

feature xi of a request i. With a bit abuse of notation, we use

i to denote the order that is converted from a request i. For a

driver j at state sj , we restrict the set of feasible orders (for

assigning drivers to) to orders that are within a certain distance

(e.g., 5 kilometers) of the driver, which we denote as Ij . The

dispatch action of a driver is thus denoted as a binary vector

bj = 〈bji〉, ∀i ∈ Ij . It is required that a driver can be assigned

to at most one order at a time:
∑
i∈Ij

bji ≤ 1.

When a driver j is assigned to an order i ∈ Ij , i.e., bji = 1,

the driver will pick up the passenger at location li, and finally

go to the destination l′i of the order. In this case, the reward

is piai − piβ, where ai is the price factor. When the driver

is not assigned to any order, i.e., bji = 0, ∀i ∈ Ij , the driver

is idle (within the next time period), and the reward is zero.

For simplicity, we assume an idle driver performs a random
walk around the original location. The random walk process

is simulated with historical driver trajectory data. Therefore,

the immediate reward of a driver is denoted as:

r(sj , bj) =
∑
i∈Ij

bji(piai − piβ) (2)

For state transition, if the driver is assigned to an order i,
the next state is the destination of the order and the time of

arrival, which is the sum of the time to pick up the passenger

and the service time. If the driver is not assigned to any order,

the next state is determined by the random walk process.

Different from traditional MDPs where the value of a state

only depends on the action performed on the same entity

(i.e., a driver), in our problem, the value of a driver also

depends on the pricing strategies of the other entities (i.e., the

requests). This is because the pricing strategies affect whether

the requests will convert into orders, and thus the feasible

order set Ij would be affected for each driver j. To take this

into account, we use π to denote the generic joint pricing

and dispatch policy, and the immediate reward of a driver j

(Eq. (2)) can be rewritten as rπ(sj). Thus, the accumulated

value of a driver j at state sj = (lj , tj) is defined as:

Vπ(sj) =

send∑
s′j=sj

rπ(s
′
j), (3)

where rπ(s
′
j) is the reward of a driver under state s′j with the

policy π, and send is the terminal state. In this problem, the

terminal state of a driver is defined as the state either one day

is over or the driver logs off the ride-hailing platform.

2) Order Dispatch: The order dispatch process aims at

assigning drivers to orders, so that the orders are served. In

practice, order dispatch usually takes place on a discrete time

basis (e.g., every few seconds). Within the current time period,

a set I of orders (including those that are left from the last time

period) are collected, and there are a set J of vacant drivers

that are distributed over the entire city. Given a matching of a

driver j ∈ J and an order i ∈ Ij , the long-term accumulated

reward of this matching is represented as the immediate reward

of fulfilling the order i and the future effect of repositioning

the driver j from s = (lj , tj) to s′ = (l′i, tj + Ti):

vπ(i, j) = piai − piβ + γ(Vπ(tj + Ti, l
′
i)− Vπ(tj , lj)), (4)

where γ is a discount factor which implies the weight of future

effect, Ti is the estimated travel time of order i.
In each time period, the objective of order dispatch is to

find the optimal dispatch strategy b, so that the total value of

all the dispatch is maximized. Recall that we denote a dispatch

strategy of a driver j as bj = 〈bji〉, i ∈ Ij . Let b = 〈bj〉, j ∈ J
denote the dispatch strategy of all the orders and drivers. Thus,

we have the following integer linear program (ILP):

max
b

∑
j∈J

∑
i∈I

vπ(i, j)bji (5)

s.t.
∑
j∈Ji

bji ≤ 1, ∀i ∈ I (6)

∑
i∈Ij

bji ≤ 1, ∀j ∈ J (7)

bji ∈ {0, 1}, ∀i ∈ I, j ∈ J (8)

Constraint (6) indicates that at most one driver can be assigned

to an order, where Ji is the set of feasible drivers that are

within the dispatching distance of the order. Constraint (7)

specifies that a driver can be assigned to at most one order.

Constraint (8) restricts that all decision variables are binary.

We can see that this problem belongs to the class of bipartite

matching problems. In practice, we solve this problem with

the Kuhn-Munkres (KM) algorithm [35].

C. Revisiting Value Function of Request Pricing

When order dispatch is taken into account, the immediate
reward (i.e., driver income in the current setting) in Eq. (1)

can be rewritten as

rπ(xi, ai) = r(xi, ai; sj , bj) =
∑
j∈Ji

f(xi, ai)bji(piai − piβ)
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With a driver’s spatio-temporal value definition in Eq. (3), the

expected cumulative future reward of a certain pricing strategy

ai towards request i is:

Rπ(xi, ai) = γ
∑
j∈Ji

f(xi, ai)bji(Vπ(l
′
i, tj + Ti)− Vπ(lj , tj))

Combining the above two equations, the total expected reward

of a pricing strategy ai is:

uπ(xi, ai) =
∑
j∈Ji

f(xi, ai)bji[piai − piβ

+ γ(Vπ(l
′
i, tj + Ti)− Vπ(lj , tj))]

(9)

From this equation, we can see that both the immediate

and future rewards of a pricing strategy ai are also closely

dependent on the dispatch strategy bj on the current time

period, and the joint pricing and dispatch policy π in future

time periods. We refer to Table I as the list of notations.

TABLE I
LIST OF NOTATIONS.

i A request i
xi Context information of request i
pi Base price of request i
ai Pricing factor & an arm in the bandit algorithm

f(xi, ai) Request conversion rate
j A driver j
sj sj =(lj , tj): the spatio-temporal state of driver j
bji Implies whether j is assigned to i
π π=(πp, πd): the joint pricing and dispatch policy

Vπ(sj) Value function of driver j given sj under policy π
vπ(i, j) Value of a matching between j and i
rπ(xi, ai) Immediate reward of ai given xi under policy π
Rπ(xi, ai) Future effect of price ai given xi under policy π
uπ(xi, ai) Total reward of price ai given xi under policy π

Despite the clear formulations for the value function of

request pricing (Eq. (9)) and the global order dispatch op-

timization (Eqs. (5)-(8)), the two problems cannot be easily

solved because of the unknown spatio-temporal value function

Vπ(s) of a driver as well as the request conversion function

f(x, a). The inter-dependent pricing and dispatch policies

make the learning of these values even more challenging.

While reinforcement learning approaches have been proved to

be effective in solving sequential decision making problems,

they usually rely on a uniform MDP definition, which however,

is not appropriate in our problem. This is because: (i) Request

pricing needs to be done immediately after its emergence,

making it impractical to formulate the state for the entire

set of requests and drivers. (ii) If we define state for only

individual requests, the decision entities would change from

requests to drivers when performing a dispatch task. (iii)

Moreover, even if we have a uniform MDP definition without

considering the timing requirements of request pricing, the

state and action spaces of the formulated MDP would be

huge, making it impossible to be solved with current available

techniques towards solving large scale MDPs. To address these

challenges, we propose the InBEDE algorithm.

V. METHODOLOGY

In this section, we present our proposed algorithm InBEDE

to the above joint pricing and dispatch optimization problem.

Figure 2 depicts the overall framework of InBEDE. The key

idea of InBEDE is that, we use a contextual bandit algorithm

for request pricing and employ a TD learning framework to

estimate the future effect of pricing which is dependent on

the global order dispatch component. In this way, the request

pricing and order dispatch components are integrated, and

the contextual bandit algorithm and the driver spatio-temporal

value functions can be iteratively trained in a mutually boot-

strapping manner.

Fig. 2. An integrated approach for request pricing and order dispatch.
Dispatch edge weights are updated every day. Bandit policy parameters are
updated per dispatch step.

A. Semi-Contextual Bandit for Distributed Request Pricing
Due to its ability to exploit an optimal action while explor-

ing potentially more optimal actions (and updating policies on
the go) based on the current context, we adopt the idea of a

contextual bandit algorithm as the keystone for the distributed

request pricing component. More specifically, we design a

semi-contextual bandit algorithm, where our policy treats the

emergence of a request i as a trial.2 In trial i, the context
is the feature vector xi of the request which summarizes the

request’s contextual information described in Section IV-A.
Based on the context observed, a contextual bandit algo-

rithm seeks to select an arm ai ∈ A to maximize the expected

long-term payoff. The payoff function uπ(xi, ai) is defined as

the reward associated with a certain arm ai and context xi.

Note that opposed to traditional contextual bandit algorithms

where the decision is one-shot and the payoff function is

merely the immediate reward, the payoff function in our semi-

contextual bandit algorithm is a sum of the immediate reward

and the future reward (as in Eq. (9)). Moreover, the payoff

function in this problem is not only dependent on the pricing

policy πp, but also on the dispatch policy πd. Formally, we

define the expected payoff function of a certain joint pricing

and dispatch policy π = (πp, πd) as:

Uπ(X ) = E

{ ∑
x∈X

uπ(x, a)
}
. (10)

2Note that by treating each request as a trial, we assume that the pricing of
different requests does not influence each other. While this assumption may
not hold in some cases (e.g., for requests that are geographically close), it is
natural that for the vast majority of the requests, the pricing of one request
has very limited effect on one another.
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Note that in the following of this sub-section, we omitted the

sub-script i of xi and ai for ease of representation. X is the

total set of requests, and uπ(x, a) is the payoff of selecting

arm a given context x (see Eq. (9)).

As introduced above, there are several classical algorithms

designed for contextual bandit problems [26], [27], [29],

[30]. Without loss of generality, we adopt the LinUCB style

algorithm due to its simplicity in implementation. Note that

all the other algorithms can also be utilized in our framework.

Similar to LinUCB, we assume for each trial, the expected

payoff of an arm a ∈ A is a linear function in its d-dimensional

context vector x with parameter θa:

E

{
uπ(x, a)|x

}
= xT θa (11)

To estimate θa for each arm a, we need to collect a set

of context vectors x with its corresponding payoff uπ(x, a).
Denote the training inputs before the current trial as a m× d
matrix Da, whose rows correspond to the m training inputs

(contexts) that observed before the current trial for the arm

a, and let ca ∈ Rm be the corresponding payoff vector. θa
can be estimated using the ridge regression (as a closed-form

solution) [36]:

θ̂a = (DT
a Da + Id)

−1DT
a ca, (12)

where Id is a d×d identity matrix. Action is then selected as:

a = argmax
a∈A

(xT θ̂a + α
√

xTA−1
a x), (13)

where Aa =DT
a Da + Id, α= 1 +

√
ln(2/δ)/2 is a constant

with δ > 0.

B. Estimating Future Effect of Pricing with TD Learning

As is noticed, in the above semi-contextual bandit algorithm,

the future effect Rπ(xi, ai) of a currently selected arm ai
(i.e., a pricing strategy) cannot be known immediately, since

we need to know the future spatio-temporal value Vπ(sj) =
Vπ(lj , tj) of the driver j that is assigned. This prevents

us from learning and updating our contextual bandit policy

online. To overcome this problem, we integrate our semi-

contextual bandit algorithm with TD learning, where instead

of getting the exact long-term action value using the Monte

Carlo method, we obtain an approximation of the value by

way of dynamic programming (DP).

More specifically, our approximation of the current pricing

strategy ai is a sum of the immediate reward and an estimated

future effect of repositioning the assigned driver:

ûπ(xi, ai) =
∑
i∈Ji

f(xi, ai)bji[piai − piβ

+ γ(V̂π(l
′
i, tj + Ti;φ)− V̂π(lj , tj ;φ))]

(14)

where V̂π(lj , tj ;φ) is an approximation of the long term

spatio-temporal value of a driver with parameter φ. Such

approximation can be achieved by previous approaches such

as the tabular [8] and deep neural network [9] approximators.

We adopt the latter due to its superior power of value represen-

tation. Note that the driver spatio-temporal value approximator

is a sub-routine of InBEDE, and InBEDE can also be easily

adapted to the tabular approximator. With Eq. (14), once we

know the request conversion result (which replaces f(xi, ai)
by either 1 or 0) and the dispatch strategies bji, ∀j ∈ Ji that

are related to request i, we are then able to approximate the

long term value of a current pricing strategy ai.

C. InBEDE
As shown in Algorithm 1, InBEDE proceeds in an iterative

manner, where the input is the initial order list OL0 and driver

list DL0 at time t = 0. It starts with an initialization of the

bandit algorithm parameters θ and the driver value network

approximator parameters φ. It then enters the iterative training

loop in Lines 3-16. Within each iteration loop (usually a day),

it goes through all the order dispatch time slots t = 0, . . . , T .

For each t, it first obtains the updated order list OLt and

driver list DLt, it then employs the current contextual bandit

algorithm with parameter θ to price the requests that arrive

within the time slot t (Lines 6-11). At the end of time slot t,
the bandit parameters θ are updated with the immediate reward

r(xi, ai) and TD estimation of future reward. After an iteration

of dispatch is finished (end of a day), the driver trajectories are

collected and the parameters φ of the driver spatio-temporal

value approximators are updated with a subroutine [9].

Algorithm 1: InBEDE

1 Input: order list OL0 at t = 0, idle driver list DL0 at

t = 0;

2 Initialize θ, φ;

3 for Iteration 1, . . . , do
4 for t = 0, . . . , T do
5 Update OLt and DLt;

6 for Request i that arrives at t do
7 Observe feature xi;

8 Select an arm ai according to the bandit

algorithm θ;

9 if Request i converts into order then
10 Append request i into order list OLt;

11 Perform dispatch among OLt and DLt with

Eqs. (5)-(8), using the driver value network φ;

12 for Request i that arrives within t do
13 Get estimated reward ûπ(xi, ai) using Eq. (14);

14 Update parameter θ with (xi, ai, ûπ(xi, ai));
15 Collect driver trajectories (s, a′, s′, r);
16 Update parameter φ with the collected driver

trajectories;
17 return θ, φ;

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed InBEDE algorithm

using a system simulator of Didi Chuxing with real-world data

from two major cities in China. City A is a median-sized city

in China with a population of around 5 − 10 millions, while

city B is a large city with a population of over 10 millions.3

3The city names are not revealed per company data policy.
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A. Environment Setting and Simulator Description

We first describe the dataset and the dedicated ride-hailing

system simulator utilized in the evaluation.

1) Dataset Description: To evaluate the performances of

our proposed approach, we randomly select a date for each

of the two cities for evaluation (Oct. 25, 2017 for city A, and

Mar. 5, 2018 for city B).4 The anonymous dataset used in this

paper consists of the following components:

Request data. Each entry of the request data contains

the contextual information of the request (as introduced in

Section IV-A) and whether it converts to an order. For the two

selected dates, there are in total around 200, 000 requests for

city A and 1, 000, 000 requests for city B.

Driver log on and off activities data. This dataset records

the time and location of a driver when he/she logs on/off the

ride-hailing platform. This dataset is utilized to simulate the

working status of the drivers.

Driver trajectory data. This includes both cases where

drivers are serving a passenger (on service) and driving idly

without fulfilling a trip order. This dataset is used to simulate

the driving behavior of the drivers when they are logged in

the ride-hailing platform.

2) System Simulator: For all the experiments, the feasible

action space is A = {0.85, 0.9, 0.95, 1, 1.05, 1.1, 1.15}.
The unit time period of order dispatch is set as 2 seconds,

which is consistent with typical real-world practice.

We use a system simulator based on real-world data from

Didi Chuxing for the evaluation. The differences between the

simulated results and the real-world situation is less than 2%,

in terms of core metrics such as drivers’ income, order answer

rate and driver idle rate, etc. The simulator consists of the

following three modules:

a) Request conversion module.: This module takes as in-

put a request and outputs whether it converts into an order. We

simulate it with two types of CR functions. (i) Context-Free
CR function. In the first type, we evaluate our approach under

a context-free CR function of the form f(x, a) = f0+k(a−1),
where f0 is a base probability when the pricing factor a = 1,

k is a price elasticity factor implying a passenger’s sensitivity

to prices. In this case, the CR function only depends on

the pricing strategy a. (ii) Contextual CR Function. The

second type of CR function is designed based on a logistic

regression (LR) model learned from historical request data.

This model is widely adopted in existing taxi pricing and

dispatch literature [37], [38]. To get the request conversion

result for a given pricing factor under this LR model, a naive

way is just to multiply the base price by the pricing factor,

and feed the new price to the learned LR model. However, it

is worth noting that, all the price features in the learned LR

model are only original prices, while in practice, the weights of

the price are much larger than the learned values, as customers

are always more sensitive to the “changes” of prices than to

4Despite only one day data, there are already more than 200,000 requests
for city A and 1,000,000 requests for city B. The sizes of the datasets are
large enough to demonstrate the performances of our approaches.

the absolute values of the prices. In order to characterize this

phenomenon, we modify the learned LR model by multiplying

the weight of the price feature by a factor.

b) Order dispatch module.: The core of this module is

the KM algorithm, which solves the ILP in Eqs. (5)-(8). It

takes as input values vπ(i, j) of matching from driver j to

order i, and outputs the optimal matching strategy b.
c) Driver status update module.: This module updates

the location and vacancy status (vacant, busy, or on the way

to pick up a passenger) of a driver after order dispatch.

B. Context-Free CR Function

To see whether the bandit algorithm works in the request

pricing tasks, we first evaluate the semi-bandit algorithm in

a simplified environment setting, where 1) the CR function

is context-free of the form f(xi, ai) = f0 + k(ai − 1) (as

described in the previous subsection), 2) we use a pre-trained

(using the original prices in the historical data as the pricing

strategy, trained with one month of driver trajectory data) and

fixed driver spatio-temporal value network Vπ(t, l). We fix f0
as 0.5 and 0.3 respectively for cities A and B which are close

to the average CR according to our request dataset. We then

vary k to evaluate the performance of different approaches

under different price elasticity values.

(a) City A (b) City B

Fig. 3. Total reward of different methods on a simplified context-free CR
function setting, normalized by dividing the reward of the Optimal approach.

We compare the following three methods:

• V-net, which is the state-of-the-art order dispatch ap-

proach [9]. This approach only optimizes dispatch strat-

egy, and uses original prices in the historical data as the

pricing strategy.

• InBEDE-UCB1. UCB1 is a context-free bandit algorithm.

Since the CR function is context-free, we use UCB1 as

the bandit algorithm component.

• Optimal-Fixed-Price. For context-free CR function, re-

quest conversion rate only depends on request prices.

Hence, we can find the optimal fixed pricing strategy by

a brute-force search in the price space A. This approach

also uses V-net as the order dispatch component. Note

that under the context-free CR function, this strategy is

close-to-optimal.

Figure 3 shows the comparison results, where the x-axis

is the price elasticity k, and the y-axis is the normalized

total reward of V-net and InBEDE-UCB1 with respect to the

Optimal-Fixed-Price approach, so that by default, the total

reward of the Optimal-Fixed-Price approach is 1. We can
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see that for both cities and different price elasticity k, our

algorithm significantly outperforms the V-net baseline, and is

close to the Optimal-Fixed-Price approach. It is worth noting

that in some cases (e.g., for City A when price elasticity

k = 1.5), our InBEDE algorithm obtains smaller total reward

than the V-net baseline. This is because under such a setting,

the original prices (i.e., with a pricing factor of 1) used in the

V-net baseline happen to be the optimal price, while InBEDE,

which is a reinforcement learning method in essence, spends

some trials to explore the optimal pricing strategies at the

beginning. Thus, InBEDE cannot achieve optimality from the

very beginning. However, the close-to-optimal performance of

InBEDE shows that InBEDE is able to learn optimal pricing

strategies after enough trials, and is able to generalize to

different price elasticity settings. Similarly in Figure 3(b), the

performances of the three methods are almost the same when

k = 1.5 to 2.5. This is because in this case, the optimal price

is always the original price in City B. This will be further

demonstrated in the following.

We now show in Figure 4 the price statistics selected by our

InBEDE-UCB1 algorithm, where the area of a sector indicates

the portion of the corresponding price. Comparing Figure 4(a)

with Figure 4(b), we find that, the portion of high price factors

in City B tends to be larger than that of City A. This is because

the average request conversion probability (used as the base

probability f0 in the simulator) of City B is lower than that

of City A, i.e., customers in City B have a same probability

of sending out an order even with a slightly higher price.

Another interesting finding is that when price elasticity k
increases from 0.5 to 2.5 (i.e., when passengers are more sen-

sitive to price changes), the portion of lower prices selected by

InBEDE-UCB1 also increases. This follows the intuition that

when price elasticity is high (i.e., when customers are more

sensitive to price changes), a lower price should be quoted.

We will further elaborate on this finding in the following

subsection, with experiments done on a contextual CR function

learned on real-world historical request conversion data of the

two underlying cities.

(a) City A

(b) City B

Fig. 4. Statistics of prices selected by InBEDE-UCB1 in cities A and B, with
varying price elasticity values from 0.5 to 2.5.

(a) City A (b) City B

Fig. 5. Total reward of different methods on a contextual CR function setting.
The x-axis denotes the price elasticity k, and the y-axis denotes the total
reward, which is normalized by dividing the total reward of the V-net method
with k = 1.

C. Contextual CR Function

In this set of experiments, we evaluate our proposed algo-

rithms under a more realistic scenario, where the contextual

CR function (learned from historical request conversion data)

is used as the request conversion module. We compare the

following different algorithms:

• V-net.

• InBEDE-UCB1.

• InBEDE-Fix. This method uses a fixed driver spatio-

temporal value network (pre-trained along with original

pricing strategies) for order dispatch.

• InBEDE-Iter. This method uses the iteratively trained

pricing (output by the bandit algorithm component) and

dispatch policies (using the learned driver spatio-temporal

values) in InBEDE, as shown in Algorithm 1.

The comparison results are shown in Figure 5. We can

see that, first, the total reward obtained by all the approaches

generally decreases when price elasticity increases. Intuitively,

this is because that higher price elasticity implies that the

demand from customers is somewhat less “rigid demand”, thus

increased prices would lead to a higher loss of demand. Sec-

ond, our proposed methods (i.e., InBEDE-UCB1, InBEDE-Fix

and InBEDE-Iter) significantly outperform the V-net baseline.

Third, InBEDE-Fix and InBEDE-Iter, which utilize LinUCB

as the bandit algorithm, achieve much higher total reward

than InBEDE-UCB1. This demonstrates that it is beneficial

to exploit the contextual information while making pricing

decisions. Last, with the iterative training of the contextual

bandit model and the driver spatio-temporal value network,

InBEDE-Iter is able to gain a considerably higher total reward

(in most cases) than the pre-trained and fixed driver value net-

work (InBEDE-Fix). This demonstrates that the performance

of the joint pricing and dispatch could be further strengthened

with the mutually bootstrapped iterative training. Note that

despite the smaller amount compared with the improvement

with respect to InBEDE-UCB1, this improvement is still

considerable because even a small relative improvement would

incur a great absolute gain, considering the millions of base

total driver income per day.

We also show price statistics of InBEDE-Iter in Figure 6.

Similar to the contextual-free scenario, we can see that when

customer price elasticity k increases (from k = 1 to k = 7),
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(a) City A

(b) City B

Fig. 6. Statistics of the price selected by InBEDE-Iter in the contextual CR
function scenario, with varying price elasticity values from k = 1 to 7.

the portion of higher prices selected by our proposed approach

significantly decreases. For example, in City A, the portion of

pricing factor 1.15 decreases from 73.49% to 56.71%, and

the portion of pricing factor 0.85 increases from 5.66% to

9.42%. More interestingly, since the CR function is fitted with

real-world request conversion data, it demonstrates, somewhat

counter-intuitively, that a potentially higher price should be

quoted to requests in order to maximize the total reward, while

in practice, the prices of most ride-hailing platforms are much

lower. We conjecture that this is mainly due to the consider-

ations of customer satisfaction and market competition.

D. Constraints on Price Increase

From statistics of prices selected by our proposed InBEDE

framework, we can see that in most cases, increasing prices

would lead to increased total reward. However, increased

prices would also incur a substantially lower customer sat-

isfaction. As a result, we come up with a modified version of

InBEDE, where the portions of increased prices are strictly

constrained. More specifically, for each price factor which is

larger that 1, we restrict that the portion of it being selected

cannot exceed a certain threshold (e.g., 1%, 5%).

Running estimate trick. With price constraints, it means

that we cannot arbitrarily select any price factor merely

with the bandit algorithm. Instead, we need to filter out the

restricted portion of most “effective” requests where increased

prices could return the highest “advantage” compared with the

original price. However, since we do not know future request

information, we cannot obtain the statistics of this advantage

for the entire request population. To handle this issue, we use

the lowest advantage (one for each increased price) of the

previously selected increased prices as a running estimate of

the lower bound advantage of the portion of effective requests.

For an arm selected by the bandit algorithm, we first compare

the advantage of this arm with the estimated lower bound, and

finally select this arm only when its advantage is larger than

the lower bound. Otherwise, we use the original price.

We evaluate three different extents of thresholds, i.e.,

5%, 1%, and 0%. E.g., 1% means that the portion of each

increased price (i.e., 1.05, 1.1 and 1.15) cannot exceed 1%

(a) City A (b) City B

Fig. 7. Total reward obtained by different methods on a contextual CR
function setting with price constraints, where the x-axis denotes the price
elasticity k, and the y-axis denotes the total reward, which is normalized by
dividing the reward of the V-net method with k = 1.

of the entire request population. Correspondingly, the total

portion of increase prices cannot exceed 3%. 0% means that

strictly no price increase is allowed. We compare the above

three conditions with the V-net approach.

The results are shown in Figure 7. For both cities, we see

that following our expectation, with a more strict constraint

on price increase (from 5% to 0%), the total reward decreases

correspondingly. For city A, the total reward obtained by

InBEDE-5% is still close to that of V-net. When there is

strictly no increase of prices, the total reward is on average

4.3% lower than that of V-net. However, considering that there

are an overall 19% of requests with decreased prices (as shown

in Figure 8(a)), this decrease is an acceptable amount.

As shown in Figure 7(b), the performance of InBEDE is

even better on city B. It is worth mentioning that, when only

a maximal 1% price increase is allowed (and the prices of

an overall 25.8% of the requests are decreased), InBEDE is

still able to obtain a substantial gain compared with V-net.

Moreover, even when strictly no price increases are allowed,

the total reward obtained by InBEDE is still comparable to that

of the V-net method. Figure 8(b) shows the price statistics of

InBEDE-0% on city B under various price elasticity values.

Take k = 1 as an example, we can see that prices of the

the majority of requests are unchanged. There is a portion

of 19.86% of requests whose prices are decreased to 0.85

of the original prices, and 3.69% and 1.69% of requests are

imposed price decreases to 0.9 and 0.95, respectively, totalling

25.24% of requests with price discounts. Combining a loss of

only 1% versus the V-net method in Figure 7(b), we can see

that InBEDE with price constraints has been truly effective

in maintaining total driver income while benefiting customers

with a substantially decreased price.

VII. CONCLUSION

Pricing and dispatch have been the two major leverages

towards mitigating supply-demand imbalance of ride-hailing

system. Recently, we have observed that pricing and dispatch

decisions are not independent, but are inherently interrelated.

Based on this observation, we make the first attempt to jointly

optimize pricing and dispatch within a sophisticatedly de-

signed, unified framework called InBEDE. In InBEDE, the two

components, namely contextual bandit for request pricing and

TD learning for order dispatch, are mutually bootstrapped via

69



(a) City A

(b) City B

Fig. 8. Statistics of the price selected by InBEDE with strictly no price
increase. Price elasticity values are varied from k = 1 to 7. The prices of
around 17% ∼ 27% of the requests are decreased, which could generate
a substantial benefit to the customers. We do not show price statistics for
InBEDE-1% and InBEDE-5% due to space limit, but the patterns are similar.

an iterative training process. We demonstrate the effectiveness

of InBEDE by testing it using real-world data from two

Chinese cities on the Didi Chuxing platform.
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