
VASE: A Twitter-based Vulnerability Analysis and
Score Engine

Haipeng Chen1,*, Jing Liu2,**, Rui Liu1,*, Noseong Park2,**, and V.S. Subrahmanian.1,*

1Dartmouth College
2George Mason University

*{haipeng.chen, rui.liu.gr, vs}@dartmouth.edu;
**{jliu30, npark9}@gmu.edu

Abstract—When a new vulnerability is discovered, a Common
Vulnerability and Exposure (CVE) number is publicly assigned
to it. The vulnerability is then analyzed by the US National
Institute of Standards and Technology (NIST) whose Common
Vulnerability Scoring System (CVSS) evaluates a severity score
that ranges from 0 to 10 for the vulnerability1. On average,
NIST takes 132.7 days for this — but early knowledge of the
CVSS score is critical for enterprise security managers to take
defensive actions (e.g. patch prioritization). We present VASE
(Vulnerability Analysis and Scoring Engine) that uses Twitter
discussions about CVEs to predict CVSS scores before the official
assessments from NIST. In order to leverage the intrinsic corre-
lations between different vulnerabilities, VASE adopts a graph
convolutional network (GCN) model in which nodes correspond
to CVEs. In addition, we propose a novel attention-based input
embedding method to extract useful latent features for each CVE
node. We show on real-world data that VASE obtains a mean
absolute error (MAE) of 1.255 for predicting the CVSS score
using only three days of Twitter discussion data after the date
a vulnerability is first mentioned on Twitter. VASE can provide
predictions for the CVSS scores for 37.85% of the CVEs at least
one week earlier than the official assessments by NIST.

Index Terms—Vulnerability Severity Prediction; Social Media
Data Mining; Graph Convolution Networks; Input Embedding

1 INTRODUCTION

In the face of an ever-increasing barrage of attacks, alerts,

malware, patches, and more, IT security personnel in most

organizations are overworked and overwhelmed [1]. To help

ameliorate this situation, when a new vulnerability is discov-

ered, a Common Vulnerability and Exposure (CVE) number-

ing authority2 assigns a CVE number to that vulnerability,

along with a brief description. Subsequently, NIST releases a

severity score via the Common Vulnerability Scoring System

(CVSS) for that CVE. The CVSS score of a CVE serves as

a key input for critical decisions (e.g., severity score guided

patching [2, 3]) by IT security personnel. However, as pointed

out in [4], it takes an average of 132.7 days for NIST to

evaluate the CVSS score after the public assignment of a CVE

number to a vulnerability. During this period, enterprises may

be vulnerable to malicious cyberattacks which utilize the in-

formation provided at the time of disclosure. According to [5],

Authors listed in alphabetic order.
1We use vulnerability and CVE interchangeably for the same concept.
2MITRE Corporation is one such CVE numbering authority in the US.

“half of the exploits were published within two weeks after

the vulnerability being discovered”, and “only one percent of

vulnerabilities have exploits developed more that a year after

its discovery”. Therefore, it is critical to provide an estimation

of the CVSS score as early as possible.

Social media has been used to predict certain cybersecurity

events [6, 7, 8, 9, 4, 10]. Our data indicates that there is active

discussion on Twitter after some CVE numbers are published.

In this paper, we leverage the Twitter discussion about a CVE

in order to predict that CVE’s CVSS score as early as possible.

A straightforward way is to train a feature engineering-

based machine learning model (with historical data) to inde-

pendently predict the CVSS score for each CVE. However,

this is sub-optimal because i) it neglects some potential corre-

lations between different CVEs and ii) it requires manual effort

to filter out useless tweets and extract important features. For

instance, Twitter discussion analysis shows that CVE-2017-

0143 and CVE-2017-0146 are highly correlated vulnerabilities

— both were used by the infamous WannaCry ransomware.

To better leverage correlations among CVEs, we make our

first technical contribution by building a graph convolutional

network (GCN) based prediction model, where each node of

the graph is a CVE, and the edges are constructed using

semantic similarities between the sets of tweets discussing

each pair of CVEs. In general, each tweet contains only partial

information of a CVE, and is not likely to cover all aspects

about a CVE. Hence, it is important to consider the whole set

of tweets that mention a given CVE.

Features are usually fed directly into GCNs after pre-

processing — but this can involve expensive feature extraction.

Some GCN models adopt the concept of a (usually linear)

embedding layer before graph convolution layers in order to

reduce dimensionality. However, in our problem, the input

to the GCN is a pool of tweets which cannot be efficiently

encoded by a simple linear embedding layer. The number

and content of tweets that mention different CVEs can vary

dramatically, making it difficult to uniformly represent them

as a single-sized input feature vector. For some popular CVEs,

the number of associated tweets is much larger (e.g., several

thousands) than for others. Hence it is challenging to sort out

the tweets with the most critical information within a large

pool of related tweets. Moreover, not all tweet sentences can be

976

2019 IEEE International Conference on Data Mining (ICDM)

2374-8486/19/$31.00 ©2019 IEEE
DOI 10.1109/ICDM.2019.00110



 
Pool of tweet

sentences

Sampling

Tweet
sentence

Bi-LSTM Bi-LSTM

.... ....
Bi-LSTM

Aggregation

+

Base features

Moving Average

moving average in the
previous mini-batch

Input embedding Layer

input of GCN node

Input embedding
layer

CVE
node

.... ....

Fig. 1: The proposed GCN-AE architecture with a sample embedding layer for one CVE.

fed into one training mini-batch due to limited GPU memory.
To tackle these two challenges, our second technical contri-

bution is the design of a novel embedding layer (cf. Figure 1)

on the raw input (i.e., a pool of tweet content), which consists

of three sub-layers: i) a bi-directional LSTM which is used to

extract a latent feature vector for each tweet, ii) an attention

layer which is to efficiently sort useful tweets’ feature vectors

out, and iii) a moving average layer which is used to handle the

GPU memory limitation. Our proposed Graph Convolutional

Network with Attention-based input Embedding (GCN-AE)

provides an end-to-end framework that automatically extracts

useful features from the pool of tweets of a CVE.
We conduct extensive experiments to evaluate VASE using

8-months of CVE data from 2017. The results show that

using only 3 days of Twitter discussion data related to a CVE

(after the date that the CVE is first mentioned on Twitter),

our approach predicts CVSS scores with a mean absolute

error (MAE) of 1.255. VASE can provide predictions for

37.85% of the CVEs at least one week earlier than the official

vulnerability assessments by NIST. As a comparison, note that

only 42.19% of CVEs are ever discussed on Twitter after the

assignment of a CVE number. The effectiveness of different

components of GCN-AE is shown via an ablation study.

2 RELATED WORK & GCN PRELIMINARIES

Social Media Data Mining for Cybersecurity [6, 11, 4, 10]

use Twitter to predict if and when a CVE will be exploited

in the future. [7, 8, 9] use Stack Exchange, Reddit and

Twitter to find potential cyberattack events. However, none

of these works try to predict the severity score of a CVE.

The one work most closely related to ours is [12] which uses

Twitter data to estimate their own notion of severity (different

from the CVSS severity) for a vulnerability. However, they

first predict the severity of a CVE independently from each
individual tweet, and then choose the largest severity value

among all the estimated values from a small pool of tweets

that mention the CVE, which is much simpler than our GCN-

based processing. They use a small corpus of 6, 000 tweets

for this purpose. In contrast with their relatively simple model,

we develop a neural network-based model which predicts the

widely-accepted CVSS score from a pool of tweets, and the

size of our dataset (with 204,423 tweets) is more than 30 times

larger than theirs.

Graph Convolutional Networks GCNs have been widely

adopted to deal with graphical data. Traditionally, GCNs

are designed on top of the graph spectrum (or Laplacian

matrix) [13, 14, 15]. Given a graph G with n nodes and an

adjacency matrix A, a layer-wise forward propagation rule is

usually defined as:

X l+1 = σ(D̂−
1
2 ÂD̂

1
2X lW l), (1)

where X l and X l+1 are respectively the input and output

matrices of the lth GCN layer. Â = A + I aggregates the

feature vectors of the node and its adjacent nodes. Here, I is

the identity matrix whose dimension is the same as A. D̂ is

the diagonal node degree matrix which is used to normalize

Â. W l is a trainable weight matrix of layer l. σ represents an

activation function.

One limitation of the above graph convolution is the high

computational complexity of calculating D̂−
1
2 ÂD̂

1
2 , especially

with a large number of nodes in the graph (which is the case

in VASE). Various models have been proposed to improve

the run-time of GCNs [16, 17, 18, 19, 20, 21], which can be

generally formulated in the following form:

X0 = e(F ) (2)

Zl+1 = g(X l, A) (3)

X l+1 = c(Zl+1, X l) (4)

Here e(·) is an embedding operator which transforms the raw

input feature matrix F ∈ R
n×m′

into the first hidden matrix

X0 ∈ R
n×m, where m′ and m are respectively the dimensions

of the raw and embedded input vectors, and n is the number

of nodes. g(·) is an aggregation operator, which selectively

aggregates each node’s neighbors’ hidden vectors from the

lth GCN layer based on the adjacency matrix A. c(·) is a

combination operator which combines Zl+1 and X l. Note

that for all the hidden matrices X l, l = 0, 1, . . ., their row

977



dimension is always equal to n, while their column dimension

depends on the combination operator c(·).
Existing models differ in the definition of the three op-

erators. For the aggregation operator, LGCN [18] uses k-

max pooling, where k is the average degree of nodes, while

GraphSAGE [16] uses max/mean pooling or LSTM. For the

combination operator, LGCN and GraphSAGE use column-

wise 1D convolutional and fully connected layers respectively.

PinSAGE [19] is a modified version of GraphSAGE to handle

web-scale graphs. Aggregation and combination are integrated

with an attention mechanism in GAT [17] and AGNN [21].

While aggregation and combination have been well studied,

the embedding operator has received less attention: in par-

ticular, the embedding operator is usually a fully connected

(linear) layer for dimensionality reduction. As pointed out

earlier, a key challenge in applying existing approaches to our

problem is that the raw inputs are pools of tweet sentences

which cannot be adequately encoded using simple linear

embedding layers. We therefore propose a novel embedding

operator by integrating a multi-layered bi-directional LSTM

and an attention mechanism to process raw tweets.

3 PROBLEM DESCRIPTION

The CVSS [22], which is maintained by the CVSS Special

Interest Group (SIG), provides a globally recognized standard

for CVEs. A CVSS score is a numerical score between 0 and

10 that reflects the severity of a CVE.

The goal of this paper is to predict the CVSS score of a

given CVE by using 3 days of tweets about the CVE after its

first mention on Twitter. This paper uses a dataset containing

approximately 8 months of tweets from January to August

2017. It contains the following 3 components:

CVE: The CVE [23] dataset contains a list of vulnerabilities

that are discussed on the Twitter platform before their CVSS

scores are released by NIST. Each CVE entry contains a CVE

number and the date on which it is released by MITRE. In

total, there are 6,270 CVEs in our dataset, which takes up

around 42.69% of all the CVEs within the targeted time period.

NVD: We obtain ground truth about CVSS scores from the

National Vulnerability Database (NVD) [24] at NIST which

publishes and maintains CVSS scores. We only collect CVE

entries which are discussed on Twitter before NIST releases

the CVSS score, so the size of the NVD dataset is the same

as that of the CVE dataset.

Twitter: We extract all tweets that have the “CVE” in them

during the targeted time frame from the Twitter firehose. From

our Twitter data, we observe that 58% of the tweets about a

given CVE are posted within 3 days after its first-mention

date (i.e., the date it is first mentioned on Twitter), and the

marginal increase of tweet volume becomes quickly smaller

after 3 days. To obtain a prediction as early as possible while

obtaining enough Twitter discussion data about the CVEs, we

use the 3-day Twitter discussion data for each CVE as the

raw input to GCN-AE. Our Twitter dataset contains a total of

204,423 tweets and 28,893 users.

4 METHODOLOGY

VASE consists of three main components: i) graph construc-

tion based on basic natural language processing methods, ii)

attention-based input embedding, and iii) transductive infer-

ence with GCN-AE.

4.1 Basic Features

We first extract two types of base features for each CVE:

1) The numbers of: tweets mentioning the CVE, retweets,

replies, tweets favorited, hashtags/URLs/user mentions per

tweet, verified accounts; the average age of accounts; and the

average number of tweets per account. Note that these features

are proposed by [6] for vulnerability exploit prediction.

2) We extract a bag of keywords (BoW) for each CVE

using the mutual information metric [25], and thus obtain a

BoW feature matrix for the entire set of CVEs. We then apply

Principal Component Analysis (PCA) on the BoW feature

matrix to reduce dimensionality. We call it “BoW features”.

4.2 CVE Graph Construction

Traditional machine learning models which make predic-

tions independently may be sub-optimal since they neglect the

correlations between similar CVEs. They also require manual

effort to filter out useless tweets. We therefore build a GCN-

based prediction model, which considers correlations between

CVEs. These are encoded as a CVE graph where each CVE is

represented as one node. As in [14], we have an edge linking

two CVEs if their BoW feature vectors have a cosine similarity

of κ or more and treat κ as a hyper-parameter.

4.3 Attention-based Tweet Content Embedding

BoW features are coarse-grained and do not fully capture

the content of the entire pool of tweets for the CVEs. We

therefore use the entire pool of tweets as the raw input feature

matrix denoted as F ∈ R
t×m′

where t is the total number

of input tweets, and m′ is the maximum sentence length. As

mentioned earlier, most existing GCNs use one linear layer

for the initial embedding e(·): X0 = FW 0, where W 0 is a

trainable weight matrix of the linear layer. This linear layer is

essentially performing a linear transformation of the original

input feature matrix F 0 into X0. However, a simple linear

layer cannot directly extract proper latent features from raw

texts in our problem. We therefore propose a novel architecture

to learn an embedding of the pool of tweets.

Figure 1 shows the overall VASE architecture. For each

CVE node, there is one embedding layer to extract a hidden

vector from the pool of tweets (sentences). The detailed

description for each CVE node is as follows. Note that for

each CVE one tweet sentence is denoted as a sequence of

word embedding vectors.

1) First, we use 2-layer bi-directional LSTM networks to

process raw input tweets and produce a hidden matrix

H lstm ∈ R
t×d for the set of all tweets given a CVE,

where t is the number of input tweets for the CVE and d
is the dimension of the LSTM hidden vector. Note that t is

smaller than the size of the entire pool in many cases. For

978



 
Aggregation                    

 
 
 
 
 
 
 
 

LSTM 
hidden vector 1

Attention Sub-layer 

LSTM 
hidden vector n

....

Multiply

Attention values in [0,1]

Max or Mean Pooling 

Aggregated hidden vector
representing the input tweets

Fig. 2: Attention-based input aggregation layer. This attention mech-
anism is trained to extract sentences with useful information.

space reasons, we omit the description of bi-directional

LSTM networks – see [26].

2) We then apply an attention layer to get an attentive matrix

Hattn ∈ R
t×d. Intuitively, if a tweet is not useful in

prediction, its corresponding vector in Hattn will be a

zero vector. We then do a max or mean pooling over

Hattn to get an aggregated hidden vector for each CVE.

3) Finally, the CVE-level hidden vector is concatenated with

the basic feature vector Hbase to get the final input feature

vector for the GCN.

Figure 2 illustrates the attention-based input aggregation layer.

Note that this input aggregation in VASE’s embedding layer is

different from the aggregation function of the GCN in Eq. (4).

4.3.1 Attention based Aggregation with Slope Annealing:
Formally, for each CVE, we use the following attention

mechanism to extract features from the important tweets:

ĥ = σ(τH lstmW attn), (5)

Hattn = ĥ ·H lstm, (6)

where ĥ ∈ R
t is the attention value column vector. Each

element in ĥ represents a scalar attention value for each

tweet sentence. Intuitively, higher attention values are assigned

to tweet sentences which are more useful for prediction.

W attn ∈ R
d×1 is a trainable weight matrix, and σ is the

Sigmoid activation function. In order to amplify the differences

between attention values for different tweets, we apply slope

annealing [27] by multiplying H lstmW attn with a scalar slope

parameter τ > 1. We start with τ = 1 (i.e., the original

Sigmoid function) and increase it by 0.004 in every epoch

until a maximum value τmax = 5 is reached. Thus, the slope

is τ times more steep than that of the original Sigmoid function

and the attention values in ĥ converge to either 0 or 1 quickly.

Here ‘ · ’ denotes a row-wise product of ĥ and H lstm. The

row-wise product yields the attentive matrix Hattn ∈ R
t×d.

Intuitively, if a tweet is not useful in improving prediction, the

attention weight matrix W attn will be trained to assign low

values to its corresponding row-vector in Hattn.3

3We omit the subscript for CVE nodes for ease of representation.

We then use mean or max pooling over the attention matrix

Hattn to get a single vector representation hpool ∈ R
d: hpool

is the vector representation of the input t tweets.

4.3.2 Moving Average: Ideally, all tweets in the pool should

be fed into H lstm. However, this poses 2 problems. First,

the numbers of tweets in the tweet pools vary from CVE to

CVE. Moreover, when the number of tweets is large, GPU

memory becomes an issue. To handle these two issues, we

sample a fixed number of t tweet sentences from the entire

pool of tweets for each mini-batch, while maintaining a moving
average of the aggregated hidden vector hpool over mini-

batches (the dotted line in Figure 1) :

ĥpool
i = γĥpool

i−1 + (1− γ)hpool
i , (7)

where hpool
i is the aggregated hidden vector at i-th mini-batch

and γ ∈ [0, 1] is a parameter indicating the update rate of the

moving average. Hence, ĥpool
i captures the overall information

of the entire pool of tweets when i is large.

4.3.3 Concatenating with Base Features: Suppose Ĥpool ∈
R

n×d denotes the moving average matrix of all CVEs – the

row dimension is the number of CVEs. To further augment

the input features, we also concatenate Ĥpool with the base

features Hbase. Formally, the input to GCN layers is:

X0 = (Ĥpool ⊕Hbase)W cat (8)

where ⊕ denotes concatenation of two matrices, and W cat

performs a linear transformation on the concatenated vector.

The row dimension of X0 is still equal to the number of nodes.

4.4 Graph Convolutional Networks

For one graph convolutional layer, we adopt the generalized

aggregation and combination operators as in Eqs. (3) and

(4), where one graph convolutional layer is defined as an

aggregation layer followed by a combination layer. Recall

from Eq. (3) that the aggregation here is used to aggregate the

feature vectors of neighbors for a target node, and is different

from the attention-based input aggregation in our proposed

embedding layer.

The GCN-AE model is trained in an end-to-end manner

starting with the raw input tweets F , followed by the attention-

based embedding layer to get X0. X0 is then fed into the

GCN layers. We use 2 GCN layers followed by a linear layer

with the Sigmoid activation multiplied by 10 to get the final

prediction of each node (CVE).

4.5 GCN-based Transductive Inference

There are two common ways of using GCNs: transductive

learning and inductive inference. In our problem, whenever

a new CVE is released by MITRE, we need to predict its

CVSS score based on tweets. Instead of performing inductive

learning where a generalized predictive model is learned to

infer the score of a new CVE, we perform transductive

inference where we use historical data to directly infer the

score of a new CVE from its neighborhood in the CVE graph.

For transductive inference, our CVE graph is constructed

with both training and test CVEs using their BoW features. As

979



a result, all CVEs are mutually related in the graph. During

training, only training CVEs with known CVSS scores are

utilized to define the loss function. In this paper, we use the

mean squared error (MSE) as the loss function in the training

process: L = − 1
|T |

∑
i∈T (ŷi − yi)

2, where T is a training

set of CVEs whose CVSS scores are already known, yi is the

ground-truth score of CVE i ∈ T , and ŷi is the predicted score.

It is easy to see that while the scores of the test CVEs are not

included in the loss function, they still influence the training

of the GCN-AE architecture since these test CVEs are still

interrelated with the training CVEs with known scores. GCN-

AE is optimized to minimize the training loss. At the same

time, scores of the training CVEs are inferred as side products

of the loss minimization process.

The GCN-AE architecture is trained end-to-end, with the

following learnable parameters: i) the word vectors in each

tweet sentence, which is used as the raw input to the bi-

directional LSTM, ii) the neural network weights in the bi-

directional LSTM, iii) the linear operation weight W attn in

the attention-based tweet content embedding module as well

as W cat after concatenating vectors, and iv) the parameters in

the graph convolutional layers.

5 EXPERIMENTAL EVALUATION

5.1 Experiment Settings

5.1.1 Pre-Processing: For each CVE, we collect tweets

within 3 days of the first mention of the CVE in a tweet.

We then remove some obviously useless tweets, e.g., tweets

only with a CVE number and a URL without any hashtags or

other text. We also remove stop words using the NLTK tool.

5.1.2 Evaluation Setting: We select the first 6 months of

data ( January 01 to June 30) for training and the next 8 weeks

(July 01 to August 26) for testing. We use the first mention

date of a CVE to split CVEs into train/test sets. For instance, a

CVE that first appears on Twitter on June 25 will be treated as

training data, while a CVE that is first mentioned on July 03

will be put into the test set. Moreover, in selecting the training

set, we remove all CVEs whose CVSS scores are not released

before the test date, so that it is guaranteed that we do not

unfairly exploit future information that is not available.

For evaluation, we perform bi-weekly rolling predictions,

where for every two weeks, we do predictions for the CVSS

scores of the CVEs whose first-mention date is within the two

weeks. For every two weeks, we train a different model. We

use the ADAM optimizer [28] in our training process, with a

learning rate of 0.005.

5.1.3 Hyper-parameters: For the aggregation function, we

test k-max pooling and mean pooling to have hpool. For the

combination function, we test the 1D column-wise convolu-

tions of LGCN which is more complex than the linear-based

combination of GraphSAGE. For the attention-based LSTM in

the embedding layer, the maximum sequence length is set to

the maximum sentence length in our dataset. We maintain one

vocabulary for the 8-month tweets, whose size is 4,584 words

after removing stop words, numbers, and URLs. Each word

in the vocabulary is embedded into a 48-dimensional vector

in the input layer of the bi-directional LSTM. In each training

epoch, 15 tweets are sampled for each CVE as inputs to the bi-

directional LSTM. As described in Section 4.3.2, the moving

average is adopted to capture latent information from the entire

tweets pool. We use 128 as the dimension of the hidden

vector for the bi-directional LSTM and finally get a 256-

dimensional hidden vector after concatenating forward and

backward hidden vectors for each CVE. For the edge creation

threshold, we test κ = {0.8, 0.9}. The best hyperparameter

configuration is the one with the lowest MSE loss in the

training process.

5.2 Prediction Results

We first compare GCN-AE with several classical regres-

sion models (Linear Regression, Bayes Regression, Random

Forest, Lasso, and Ridge Regression) which do not leverage

correlations between CVEs. Hyper-parameter search is also

conducted for the baseline methods to find the best hyper-

parameter using 10-fold cross-validation.

Fig. 3: Comparison results for CVSS score prediction.

5.2.1 Prediction Results: Figure 3 shows the results in

terms of mean absolute error (MAE), mean squared error

(MSE) and mean absolute percentage error (MAPE) for pre-

dicting CVSS scores using three approaches: i) “GCN-AE”

which uses GCN-AE, ii) “AE-only” which uses only the

attention-based embedding layer, iii) “Best Baseline” which

is the best result among all the baselines described above.

For all the metrics, GCN-AE yields the best results. GCN-AE

obtains MAE of 1.255, and GCN-AE with direct regression is

able to obtain MSE of 2.428 and MAPE of 0.182.

As an ablation study, we also compare with the AE-only

model where we directly predict using X0. We apply the same

Sigmoid activation multiplied by 10 to X0. Therefore, the

difference between GCN-AE and AE-only is the existence of

the GCN layers. Figure 3 shows that without the GCN layers,

the prediction accuracy is sub-optimal, e.g. MAE of 1.255 in

GCN-AE vs. 1.380 in AE-only.

5.3 Timeliness of VASE:

Figure 4 illustrates the prediction timing of VASE, where

the X-axis is the number of days that the prediction of a

CVE can be made before the NIST’s official announcement,

and the Y-axis is the corresponding number of CVEs. For

instance, the point (20, 172) means that there are 172 CVEs

980



-5 0 50 100 150 200 250 300 onwards
tcvss − tprediction

0

100

200

300

400

500

600

700
n
u
m

b
er

of
C
V
E
s

0.0

0.1

0.2

0.3

0.4

p
er

ce
n
ta

ge
of

C
V
E
s

Fig. 4: CVE quantity distributions w.r.t. the number of days that
prediction can be made to a CVE before NIST’s official release of
CVSS scores and attributes, collected from January to August, 2017.

whose CVSS scores can be predicted by VASE 20 days earlier

than NIST. We see that, for almost all the CVEs, VASE can

make predictions before NIST. VASE can make predictions

for i) 37.85% of the CVEs one week earlier, ii) 6.04% of

the CVEs one month earlier, and iii) 2.36% of the CVEs

three months earlier. These cover a huge number of CVEs

considering that there are tens of thousands of CVEs that are

disclosed each year. As cyberattacks may happen any time

after MITRE assigns CVE numbers, being able to advance

the prediction by even one week is critical for CISOs around

the world who can then decide how to allocate resources to

protect their enterprise.

6 CONCLUSION

As pointed out in an earlier paper [4], there exists a gap

of 132.7 days between the time a CVE number is assigned

by Mitre and the time NIST releases the CVSS score for that

vulnerability. System security officers around the world use

CVSS scores in assessing what CVEs to patch and when.

Having an early warning system to predict CVSS scores is

therefore critical for protecting most companies. VASE is the

first system to predict a CVE’s severity score. VASE uses a

novel mix of GCNs to leverage correlations among differ-

ent CVEs, together with a novel attention-based embedding

method to extract useful latent features from raw tweet texts

for each CVE. Experimental results demonstrate that VASE is

able to serve as a qualified early warning system before the

detailed evaluations from NIST.

ACKNOWLEDGMENT

This work is supported by ONR grants N00014-18-1-2670

and N00014-16-1-2896 and ARO grant W911NF-13-1-0421.

REFERENCES

[1] Moazzam Khan. Security analysts are overworked, understaffed and
overwhelmed — here’s how ai can help. Security Intelligence, 2018.

[2] Katheryn A. Farris, Ankit Shah, George Cybenko, Rajesh Ganesan,
and Sushil Jajodia. Vulcon: A system for vulnerability prioritization,
mitigation, and management. ACM Transactions on Privacy and
Security, 21(4):16:1–16:28, June 2018.

[3] Sushil Jajodia, Noseong Park, Edoardo Serra, and V. S. Subrahmanian.
Share: A stackelberg honey-based adversarial reasoning engine. ACM
Transactions on Internet Technology, 18(3):30:1–30:41, March 2018.

[4] Haipeng Chen, Rui Liu, Noseong Park, and VS Subrahmanian. Using
twitter to predict when vulnerabilities will be exploited. In KDD, pages
3143–3152, 2019.

[5] Fahmida Y. Rashid. Predict which security flaws will be ex-
ploited, patch those bugs. 2019. https://duo.com/decipher/
predict-which-security-flaws-exploited-patch-those-bugs.

[6] Carl Sabottke, Octavian Suciu, and Tudor Dumitras. Vulnerability
disclosure in the age of social media: Exploiting twitter for predicting
real-world exploits. In USENIX Security, pages 1041–1056, 2015.

[7] Xiaojing Liao, Kan Yuan, XiaoFeng Wang, Zhou Li, Luyi Xing, and
Raheem Beyah. Acing the ioc game: Toward automatic discovery and
analysis of open-source cyber threat intelligence. In CCS, pages 755–
766, 2016.

[8] Richard P Lippmann, Joseph P Campbell, David J Weller-Fahy, Alyssa C
Mensch, and William M Campbell. Finding malicious cyber discussions
in social media. Technical report, Massachusetts Institute of Technology,
2016.

[9] Rupinder Paul Khandpur, Taoran Ji, Steve Jan, Gang Wang, Chang-
Tien Lu, and Naren Ramakrishnan. Crowdsourcing cybersecurity: Cyber
attack detection using social media. In CIKM, pages 1049–1057, 2017.

[10] Haipeng Chen, Jing Liu, Rui Liu, Noseong Park, and V. S. Subrahma-
nian. Vest: A system for vulnerability exploit scoring & timing. In
IJCAI, pages 6503–6505, 2019.

[11] Benjamin L Bullough, Anna K Yanchenko, Christopher L Smith, and
Joseph R Zipkin. Predicting exploitation of disclosed software vulner-
abilities using open-source data. In Proceedings of the 3rd ACM on
International Workshop on Security And Privacy Analytics, pages 45–
53. ACM, 2017.

[12] Shi Zong, Alan Ritter, Graham Mueller, and Evan Wright. Analyzing
the perceived severity of cybersecurity threats reported on social media.
arXiv preprint arXiv:1902.10680, 2019.

[13] Joan Bruna, Wojciech Zaremba, Arthur Szlam, and Yann LeCun. Spec-
tral networks and locally connected networks on graphs. arXiv preprint
arXiv:1312.6203, 2013.

[14] Mikael Henaff, Joan Bruna, and Yann LeCun. Deep convolutional
networks on graph-structured data. arXiv preprint arXiv:1506.05163,
2015.

[15] Thomas N Kipf and Max Welling. Semi-supervised classification with
graph convolutional networks. arXiv preprint arXiv:1609.02907, 2016.

[16] William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive repre-
sentation learning on large graphs. CoRR, abs/1706.02216, 2017.

[17] Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero,
Pietro Lio, and Yoshua Bengio. Graph attention networks. arXiv preprint
arXiv:1710.10903, 2017.

[18] Hongyang Gao, Zhengyang Wang, and Shuiwang Ji. Large-scale
learnable graph convolutional networks. In Proceedings of the 24th
ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining, 2018.

[19] Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L.
Hamilton, and Jure Leskovec. Graph convolutional neural networks for
web-scale recommender systems. CoRR, abs/1806.01973, 2018.

[20] Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How
powerful are graph neural networks? In ICLR, 2019.

[21] Kiran K Thekumparampil, Chong Wang, Sewoong Oh, and Li-Jia Li.
Attention-based graph neural network for semi-supervised learning.
arXiv preprint arXiv:1803.03735, 2018.

[22] FIRST. Common vulnerability scoring system sig. 2019. https://www.
first.org/cvss/.

[23] MITRE. Common vulnerabilities and exposures. 2019. https://cve.mitre.
org/cve/.

[24] NIST. Vulnerability metrics. 2019. https://nvd.nist.gov/.
[25] Thomas M Cover and Joy A Thomas. Elements of information theory.

John Wiley & Sons, 2012.
[26] Chris Dyer, Miguel Ballesteros, Wang Ling, Austin Matthews, and

Noah A Smith. Transition-based dependency parsing with stack long
short-term memory. arXiv preprint arXiv:1505.08075, 2015.

[27] Junyoung Chung, Sungjin Ahn, and Yoshua Bengio. Hierarchical
multiscale recurrent neural networks. CoRR, abs/1609.01704, 2016.

[28] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic
optimization. arXiv preprint arXiv:1412.6980, 2014.

981


