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Abstract

Over the past decades, Electronic Toll Collection
(ETC) systems have been proved the capability of
alleviating traffic congestion in urban areas. Dy-
namic Electronic Toll Collection (DETC) was re-
cently proposed to further improve the efficiency
of ETC, where tolls are dynamically set based on
traffic dynamics. However, computing the opti-
mal DETC scheme is computationally difficult and
existing approaches are limited to small scale or
partial road networks, which significantly restricts
the adoption of DETC. To this end, we propose a
novel multi-agent reinforcement learning (RL) ap-
proach for DETC. We make several key contribu-
tions: i) an enhancement over the state-of-the-art
RL-based method with a deep neural network rep-
resentation of the policy and value functions and
a temporal difference learning framework to accel-
erate the update of target values, ii) a novel edge-
based graph convolutional neural network (eGCN)
to extract the spatio-temporal correlations of the
road network state features, iii) a novel cooperative
multi-agent reinforcement learning (MARL) which
divides the whole road network into partitions ac-
cording to their geographic and economic charac-
teristics and trains a tolling agent for each parti-
tion. Experimental results show that our approach
can scale up to realistic-sized problems with robust
performance and significantly outperform the state-
of-the-art method.

1 Introduction
All over the world, traffic congestion is becoming a severe
issue in urban areas. ETC systems are one of the most ef-
fective approaches introduced by transportation authorities to
mitigate traffic congestion. By setting different tolls on dif-
ferent roads, vehicles are regulated to travel on less congested
roads with lower tolls. However, traditional ETC prices are
pre-defined based on historical data and do not adapt to real-
time traffic conditions. The true merit of ETC has not been
fully leveraged. To this end, many dynamic pricing schemes
have been proposed to tackle these issues [Zhang et al., 2013;

Sharon et al., 2017; Chen et al., 2018; Mirzaei et al., 2018]
where tolls are computed based on traffic dynamics.

Nonetheless, devising a DETC scheme is still challenging
and non-trivial due to its complex problem structure including
a large scale road network, dynamic traffic flow, uncertainty
in traffic demand, and its essence of a sequential decision-
making problem. Conventionally, this sequential decision-
making problem can be formulated as a Markov Decision
Problem (MDP) and solved by Reinforcement Learning (RL)
methods. Recently, Chen et al. [2018] make the first attempt
of solving the DETC problem via reinforcement learning.
Despite its good performance in mitigating traffic conges-
tion over other methods, a major limitation of the proposed
method, PG-β, is that it is limited to a small scale road net-
work and cannot work under realistic-sized road networks. To
this end, this paper aims to close the gap by scaling up current
state-of-the-art DETC method to large scale real-world road
networks with multi-agent deep reinforcement learning and
various other novel techniques exploiting the problem char-
acteristics.

The key contributions are summarized as follows: i) First,
in order to improve the performance of PG-β, we propose
DPG-β, which employs deep neural networks to better rep-
resent the policy and value functions of the tolling agent, to-
gether with a temporal difference learning to accelerate the
update of target values; ii) Second, naive feature represen-
tation with deep neural network has only limited improve-
ments over the state-of-the-art methods as it fails to exploit
the graph nature of the road network. We apply a novel edge-
based graph convolutional neural network (eGCN) to extract
the spatio-temporal correlations of the state features for the
road network; iii) Moreover, the dimension of the state space
is equal to the number of roads, while the action space is the
number of tolled roads. For large scale road networks, train-
ing of RL models become extremely challenging due to huge
state and action spaces. Hence, we propose a novel cooper-
ative multi-agent reinforcement learning (MARL) algorithm
which decomposes the state and action spaces into sub-spaces
and solves DETC in a divide-and-conquer fashion; iv) Fi-
nally, we conduct extensive experimental evaluations in the
real world road network of Singapore. Experimental results
show that our approach can scale up to realistic-sized prob-
lems with robust performance and significantly outperform
the state-of-the-art method.
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2 Background and Related Works
2.1 Electronic Toll Collection
Originally aimed to alleviate the delay on toll roads and hav-
ing the merit of collecting tolls without cash and without
requiring cars to stop, ETC systems have been widely de-
ployed in highways and arterial roads in urban areas all over
the world. For example, ETC has been implemented and de-
ployed in Norway’s three major cities: Bergen (1986), Oslo
(1990), and Trondheim (1991), and in Singapore (1998) as
a congestion pricing system to alleviate traffic conjestion in
central areas and restricted zones for expressways and arte-
rial roads. Based on a pay-as-you-use principle, motorists are
charged when they pass through ETC gantries during tolling
hours. To alleviate traffic congestion, the toll rate varies
based on traffic conditions and time periods, which motivates
drivers to travel on less congested roads.

2.2 Related Works
ETC has received consistent and considerable attention in re-
cent years. DETC was recently proposed to further improve
the efficiency of ETC. Existing DETC schemes [Joksimovic
et al., 2005; Lu et al., 2008; Zhang et al., 2013] have been
proposed by taking into traffic dynamics into consideration.
One major limitation of these schemes is that they unrealisti-
cally assume a fixed traffic demand.

Recently, Sharon et al. [2017] propose a dynamic tolling
scheme named ∆-tolling. Although ∆-tolling computes tolls
based on real-time traffic flows, it still does not consider the
traffic demand in the model in a proactive way and may
lead to sub-optimal performance. Chen et al. [2018] pro-
pose a dynamic model called DyETC which formulates the
DETC problem as an MDP by considering the traffic dy-
namics and gains significant improvement over ∆-tolling.
Their proposed algorithm, PG-β, is built on a policy gradi-
ent algorithm called actor-critic [Konda and Borkar, 1999;
Konda and Tsitsiklis, 2000] with Beta distribution as the actor
function instead of Gaussian distribution to model a bounded
action range. Despite its good performance in traffic con-
gestion alleviation, one major limitation of PG-β is that it
only works on partial road networks with 11 zones and can-
not scale up to large scale road networks.

Recent advances in function approximation with deep
learning have shown promise in learning under high-
dimension inputs in reinforcement learning [Mnih et al.,
2015; Silver et al., 2016; Schulman et al., 2015; Lilli-
crap et al., 2015]. Many multi-agent reinforcement learn-
ing methods [Sukhbaatar et al., 2016; Gupta et al., 2017;
Lowe et al., 2017; Foerster et al., 2017] have been proposed
to tackle simple cooperative and competitive problems. How-
ever, single agent-based reinforcement learning methods like
DQN [Mnih et al., 2015], DDPG [Lillicrap et al., 2015] and
multi-agent reinforcement learning like MADDPG [Lowe et
al., 2017] cannot solve our DETC because of the large, dis-
crete state as well as large, continuous and bounded action
space. By addressing the above issues, a novel multi-agent
reinforcement learning method for the DETC problem will
be introduced in the following sections.

3 Problem Formulation
3.1 Problem Setup
Formally, the city road network can be abstracted as a di-
rected road network G = (Z,E,D) in which Z is the set of
zones, E is the set of roads that connect the zones and D is
the set of origin-destination (OD) pairs which define optional
paths and traffic demand of both zones.

We denote an OD pair as a tuple 〈zk, zj , qtk,j , Pk,j〉, where
zone zk is the origin, zone zj is the destination, qtk,j is the
traffic demand at time step t between zk and zj , and the Pk,j
denotes all the acyclic paths from zk to zj . There are H time
steps for daily-basis DETC planning. Following the travel
time model [BPR, 1964], the travel time on road e at time
step t is T te = T 0

e [1 + γ (ste/Ce)
ξ
], where T 0

e is the free-flow
travel time, ste is the number of vehicles on road e, and Ce is
the capacity of road e. γ and ξ are constants that measure to
which extent congestion affects travel time. The travel cost of
a path p ∈ Pk,j can be defined as ctk,j,p =

∑
e∈P (ate + ωT te)

where ate is the toll imposed on road e and ω is a constant
for the value of time. We use the widely-adopted stochastic
user equilibrium (SUE) model [Lo and Szeto, 2002; Huang
and Li, 2007] as our traffic equilibrium, where the portion of
traffic demand from zone k to zone j via path p at time step

t is defined as xtk,j,p =
exp {−ω′ctk,j,p}∑

p′∈Pk,j exp {−ω′ct
k,j,p′

}
where ω′ is a

constant which reveals vehicles’ sensitivity to travel cost. We
formulate the problem setup as an MDP in section 3.2.

3.2 A Finite Horizon MDP Formulation
Conventionally, an MDP is defined as a tuple 〈S,A, r, T 〉,
which consists of a set of states S, a set of actions A, a re-
ward function r : S × A → r and a transition function
T : S×A→ S. The goal of the agent for each time step t is to
maximize the expected accumulated reward

∑∞
t′=t λ

t′−trt
′

where λ ∈ [0, 1] is the discount factor. It can be achieved
by learning an optimal policy π : S → A which outputs an
action a given a state s. However, the number of vehicles that
reach the destinations depends on the OD demands at each
time step due to traffic dynamics. Consequently, the value
of a state changes over time and the value of an action is also
time-dependent. Due to its advantages of formulating sequen-
tial decision making problems, we use finite horizon MDP to
model DETC, where we maintain and update a value function
and policy function for each time step t = 0, 1, ...,H . We de-
fine the corresponding elements for our MDP formulation.

State & action. We define the state at time step t, as ste =
〈ste,j〉 where ste,j denotes the number of vehicles that travel
to zone j at time step t on road e, and st = 〈ste〉 is the state
matrix of G at time step t. The action at time step t is defined
as at = 〈ate〉, where ate is the toll set by the transit authority
on e that has an ETC gantry.

State transition. The state of the next time step t+1 can be
formed as st+1

e,j = ste,j−ste,j,out+ste,j,in, where st+1
e,j and ste,j

denote the number of vehicles on road e that travel to zone j
at time step t + 1 and t respectively. ste,j,out is the number
of vehicles that go to zone j and exit road e at time step t.
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It can be defined as ste,j,out = ste,j ·
vte·τ
Le

=
ste,j ·τ

T 0
e [1+γ(s

t
e/Ce)

ξ]
,

where Le is the length of road e, vte = Le
T te

= Le
T 0
e [1+γ(s

t
e/Ce)

ξ]

is average travel speed of road e, and τ is the time interval
between time steps. Similarly, ste,j,in is the number of vehi-
cles that go to zone j and enter road e at time step t. It can be
defined as ste,j,in =

∑
Dk=e−

⋂
e∈p∈Pk,j (q

t
k,j + q̄tk,j) · xtk,j,p,

where qtk,j is the traffic demand which comes from zone k
to zone j as introduced in Section 3.1. q̄tk,j is traffic demand
which denotes the number of vehicles that come from zone
k’s neighbouring roads and head for zone j during the period
of t− 1. It can be defined as q̄tk,j =

∑
e+=k s

t
e,j,out. Thus,

st+1
e,j =ste,j −

ste,j · τ
T 0
e [1 + γ(ste/Ce)

ξ]

+
∑

Dk=e−
⋂
e∈p∈Pk,j

(qtk,j + q̄tk,j) · xtk,j,p
(1)

Reward function. The target of the MDP is to maximize
the accumulated reward. We define the reward r(st) =∑
e∈E

∑
zj=e+

ste,jτ

T 0
e [1+γ(s

t
e,j/Ce)

ξ]
as the number of vehicles

which arrive at destinations at time step t, where e+ is the
ending point of road e and τ is the length of time interval.

Policy & value function. At time step t, a policy πt(at|st)
is the conditional probability of taking action at provided
state st. The value function at time step t can be defined as
vt(st) =

∑H
t′=t λ

t′rt.

Challenges. There are three key challenges in our formu-
lation: 1) the state space is discrete and high dimensional
(w.r.t. the number of roads), 2) the action space is also contin-
uous and high dimensional (w.r.t. the number of tolled roads),
and 3) the action space is bounded. Dynamic programming
(DP) method is a classic method to solve MDPs. How-
ever, solving our formulated MDP with DP can be compu-
tationally difficult. Vanilla reinforcement learning methods,
such as Q-learning and SARSA [Watkins and Dayan, 1992;
Rummery and Niranjan, 1994], also fail under our problem
setup because of the large scale and continuous state-action
spaces. While policy gradient methods [Williams, 1992;
Konda and Borkar, 1999; Lillicrap et al., 2015] work well
under large scale MDPs with continuous action space, these
methods do not perform well under the bounded action space.
Although PG-β [Chen et al., 2018] can solve DETC, it is lim-
ited to partial road networks.

4 Solution Algorithm: MARL-eGCN
In this section, we introduce the improved PG-β with deep
neural network to better represent the policy and value net-
works of the tolling agents, together with a temporal differ-
ence learning to boost the update of target values. To ex-
tract the spatio-temporal correlations of the state features for
the road network, we propose a novel edge-based graph con-
volutional neural network, which is adapted to our problem
structure. To tackle the large state-action space in DETC, we
decompose the state and action space and solve DETC with
our MARL model.

4.1 Deep PG-β with TD-learning
The linear representation of PG-β fails to capture the inner
correlation of state and the value function updating method,
(i.e., Monte Carlo Method), of PG-β is not efficient because
it updates the value function until the end of an episode. We
propose DPG-β, which employs deep neural networks to re-
place the linear representation of PG-β to better represent the
policy and value functions of the tolling agent, together with a
temporal difference (TD) learning in place of the Monte Carlo
method to accelerate the update of target values. In DPG-β,
we use two fully connected layers with tanh nonlinearity by
adopting the idea of target network [Mnih et al., 2015], we
define the TD-error loss function at time step t as

Lt(φt) = Est+1∼T [(Qt+1
dpg (st,at)− y)2], (2)

where φt is the parameters of the network at time step t and T
is the state transition function. y = r+λ·Qt+1

dpg (st+1,at+1) is
the TD-target value. Qt+1

dpg is the value function at time step t
for policy πt+1. The TD-error is applied to update the policy
function, TD-target is applied to update the value function,
and the policy distribution is the Beta distribution.

4.2 Edge-Based Graph Convolutional Networks
Representation

Naive feature representation with deep neural network has
only limited improvements over the state-of-the-art meth-
ods as it fails to exploit the graph nature of the road net-
work. As a result, we adopt a graph convolutional networks
(GCNs) framework to represent the value and policy func-
tions in the DETC problem. Moreover, the states define
the traffic volume of roads (edges) and vehicles transit from
roads to roads in road network and impact price of tolled
roads in DETC. Unlike ordinary GCNs [Henaff et al., 2015;
Niepert et al., 2016; Kipf and Welling, 2016; Defferrard et
al., 2016] which take nodes as input, we design a novel edge-
based graph convolutional neural network (eGCN) on DETC
road network to extract the spatio-temporal correlations of the
state (edge) features. Both the feature matrix and adjacency
matrix in our problem are defined on edges instead of nodes.

We define eGCN as f(s,V) where s ∈ R|E|×|Z| is the
state matrix of a given road network, and st is state matrix at
time step t which is defined earlier at section 3.2. V is the
adjacency matrix of the edges. We first apply an embedding
layer to each layer to obtain a latent matrix Y and apply a
non-linear activation function to Y. We feed a state matrix st

at time step t to eGCN. Formally, we adopt the formulation
proposed by Kipf and Welling [2016] to model our eGCN
with the following layer-wise formulation:

Y(l+1) = σ(M̃− 1
2 ṼM̃− 1

2 Y(l)Φ(l)), (3)

where Ṽ = V + I and V is the adjacency matrix defined on
the edges. I is an identity matrix to account for the effect of
a node itself. M is a diagonal node-degree matrix utilized to
normalize Ṽ. Yl and Y(l+1) are the outputs of the l-th and
the (l + 1)-th layers, respectively. Φl is a trainable weight
matrix for the l-th layer, and σ(·) is the activation function.
The final output of eGCN is put into the neural network of
policy and value function as demonstrated in Figure 1.
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Figure 1: The architecture of the proposed MARL-eGCN with three modules, i.e., the traffic dynamics, the state representation, and the
tolling agent. At each time step, state matrix is extracted from the traffic dynamics module and fed into the state representation (eGCN)
module together with adjacency matrix of the road network. Then, the output of eGCN is fed into the tolling agent module. The policies
generate tolling actions, which are further input into traffic dynamics to change the traffic flow. The actor and critic of the tolling agent are
updated according to the reward emitted by the traffic dynamics.

4.3 MARL with eGCN
It is very challenging to train one single agent under large
state space and large and bounded-continuous action space or
training such an agent may lead to sub-optimal performance
due to the huge amount of parameters to be optimized. A key
observation is that traffic and road networks in metropolises
can be partitioned by geographical distance, demographic
distribution and electoral divisions.

As shown in Figure 2, there are 4 partitions and each par-
tition has some nodes (zones). The magenta lines in the fig-
ure are tolled roads. Therefore, the pricing scheme in each
partition is largely based on the traffic condition within the
partition and, correspondingly, the pricing scheme between
partitions is dominated by traffic conditions between neigh-
bouring partitions. Inspired by this urban characteristic, we
propose our multi-agent reinforcement learning (MARL) so-
lution by dividing the planning areas into N partitions. Each
partition is treated as one agent, and all the agents cooper-
ate by sharing states with each other to solve the formulated
MDP introduced in section 3.2. We adopt the framework of
centralized training with decentralized execution. Figure 1
illustrates the architecture of MARL-eGCN.

More concretely, we employ a general and fast policy gra-
dient algorithm, actor critic where actor is the policy function
and critic is the value function, to build our MARL model
with eGCN. We use θt =

{
θit, ..., θ

N
t

}
to denote policy pa-

rameters where t ∈ [1, ..., H ] and use φ to denote the pa-
rameter matrix of the value networks. We define the state of
agent i of partition i at time step t as ŝi,t = 〈si,t, si,te,j′〉, where

Agent 4Agent 3

Agent 1 Agent 2

Figure 2: An example of zone partitions.

si,t = 〈si,te 〉. s
i,t
e,j denotes the number of vehicles on road e of

partition i, which travel to zone j of partition i at time step t.
si,te,j′ denotes the number of vehicles on road e of partition i,
which head for zone j′ of other partitions at time step t. The
global state st at time step t is a global status of the traffic
condition. The action for agent i at time step t is ai,t = 〈ai,te 〉
and the global action at time step t is at, which is a concate-
nated vector of actions of all agents. The reward rti for each
agent i given ŝi,t at time step t is the number of vehicles that
arrive at their destinations.

Algorithm 1: MARL-eGCN

input: θit ∈ R, j ∈ [1, ..., N ] and φ
1 for e← 0 to MAX-EPISODE do
2 while t = 1 < MAX-EPISODE-LENGTH do
3 for agent i in N do
4 ρit = Vi × f(st,V);
5 ai,t = π(ρit, θ

i
t);

6 Concatenate ai,t, i ∈ [1, .., N ] into at;
7 Take at into traffic road graph and get ŝi,t+1;
8 foreach i← 0 to N do get rit;
9 for i← 0 to N do

10 yit =
∑H
t′=t r

i
t′ ;

11 Update critic by minimizing the loss:
L(φ) = yit −Q(ρit,at);

12 Update actor using the policy gradient:
∇θitJ = ∇θitπi(a

i,t|ρit) ·Q(ρit,a
i,t);

13 ŝi,t = ŝi,t+1;
14 return θit, i ∈ [1, ..., N ];

Then we build a local adjacency matrix Vi with sizeK×N
for edges in partition i with its K neighbours where each row
is a binary vector indicating neighbours of agent i. Finally
the individual input for agent i is ρit = Vi× f(st,V). We use
Beta distribution as the policy distribution for the bounded
and continuous action space, then we define the set of policies
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for each agent as π = {πi}i=1,..,N . Hence, we can derive the
gradient of the performance measure J for policy function of
agent i as:

∇θitJ(θit) = E
st+1∼T

[∇θit log πi(a
i,t|ρit) ·Qt(ρit,ai,t)], (4)

where Qt(ρit,a
i,t) is the centralized action-value function

that inputs ρit that output by eGCN at time step t as shown
in line 4 in Algorithm 1. ρit is the spatio-temporal state for
agent i related to the partition of agent i, which is different
from the input for vanilla actor critic. We define loss function
of value function as follows:

Lt(φt) = Est+1∼T
[
(Qt(ρit,a

i,t)− y
)2

], (5)

where φ is the parameter matrix of L and y = ri + λ ·
Qt(ρit,a

i,t) is the TD-target value of agent i, which is esti-
mated by the value network and Qt is the value function at
time step t. We call our MARL model MARL-eGCN. Al-
gorithm 1 illustrates the detailed description of our MARL-
eGCN where embedded features are output by eGCN in line
4, the policy outputs action vector for each agent in line 5 and
the parameters of actor and critic are updated in line 11 and
12.

5 Experimental Evaluation
In this section, we evaluate our proposed approach on real-
world road networks of Singapore.

5.1 Experiment Setup
We first introduce our problem scenarios, compared methods,
parameters of model and the training settings.

(a) Singapore central region (b) Entire Singapore planning areas

Figure 3: Map of Singapore

Problem scenarios. As shown in Figure 3, we choose the
road network of Singapore central region (Central Net) and
the road network of Singapore all planning areas (Whole Net)
as our experimental scenarios. There are 11 zones (planning
areas) in Central Net and over 33 zones in Whole Net. We
create an abstract road network for both the Central Net and
Whole Net based on the distribution of ETC gantries, the ar-
terial roads and highways network of Singapore. We merge
some zones which have low population and small acreage into
their neighbouring zones, and thus we get 11 zones and 40
edges (roads) for Central Net and 33 zones and 124 edges for
Whole Net. We estimate the OD demand for the two road net-
work by using population data of each zone and Annual Vehi-
cle Statistics 2017 published by Singapore government [LTA,

2017]. We first obtain the total number of vehicles as 961,842
and the population of Singapore as 5,612,300, and thus we
get the per person vehicle ownership rate as 0.171. Then we
obtain the population of each zone and finally estimate the
number of vehicles of each zone. We set γ = 0.15 and ξ = 4
according to [BPR, 1964], and we set the toll range [0, 6] for
each arterial road based on the current ETC scheme in Singa-
pore. The time horizon H is set as 6 and each time step is 2
hours.
Compared methods. The methods that we evaluated in-
clude (i) PG-β, (ii) DPG-β, (iii) DPG-β-eGCN, which com-
bines DPG-β with eGCN, (iv) MARL-eGCN and (v) MARL
(MARL-eGCN without eGCN). The first 3 methods are
single-agnet methods, while the last two are multi-agent
methods. For multi-agent methods, we train 2 agents on Cen-
tral Net and 4 agents on Whole Net, respectively.
Parameters of model & training settings. The discount
factor λ of PG-β is 1 (as that in [Chen et al., 2018]) and
set as 0.9 for the other models. There are 2 dense layers for
all neural networks each with 128 neurons for single-agent
models and each with 64 neurons for all multi-agent mod-
els. The learning rates of policy and value function for single
agent models are 0.0001 and 0.0005 respectively. The learn-
ing rates of policy and value function for multi-agent models
are 0.001 and 0.0005 respectively. We use tanh activation
function for all neural networks. We use 2 layers for eGCN,
with a shape of (|Z|, 16) and (16, 16), respectively. We use
Adam to optimize deep neural networks. We train PG-β for
500,000 episodes and the other models for 100,000 episodes.
We implement the traffic dynamics with C++ and create ex-
tension file for Python with Boost.Python1 to speedup the
Python code. All models are implemented by Python and
run on a 64-bit server with 500 GB RAM and 80 Intel(R)
Xeon(R) CPU E5-2698 v4 @ 2.20GHz processors.

5.2 Result Analysis
We use the number of vehicles that arrive at their destinations
(i.e., traffic throughput) and the number of episodes for con-
vergence as the evaluation criteria.
Central net. We first compare MARL-eGCN, DPG-β-
eGCN and PG-β on the road network of Singapore central re-
gion. As illustrated in Figure 4, under the scenario of Central
Net, both DPG-β-eGCN and MARL-eGCN significantly out-
perform PG-β. We notice that for a small scale road network
like Central Net, the multi-agent (MARL-eGCN) and single
agent (DPG-β-eGCN) models have similar traffic throughput.
In terms of training efficiency, we can see that compared with
PG-β, DPG-β-eGCN uses around 50% of episodes to con-
verge, while MARL-eGCN uses only 27.7%.
Whole net. To further demonstrate the advantage of
MARL-eGCN in large scale road networks, we conduct ex-
periments on Whole Network. As shown in Figure 4, MARL-
eGCN and DPG-β-eGCN are superior to PG-β. Compared
with PG-β, MARL-eGCN gains 8.4% larger traffic through-
put and uses only 25% of episodes to get stable results. The

1https://www.boost.org/doc/libs/1 68 0/libs/python/doc/html/
index.html
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Figure 4: Traffic throughput (95% confidence interval) and convergence comparison
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Figure 5: Ablation study (values in thousands)
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Figure 6: Traffic throughput (in thousands) under various traffic conditions (Fig. a, c, d share the same legend in Fig. b)

results demonstrate that MARL-eGCN can get better traffic
throughput with fewer training episodes.

5.3 Ablation Study and Robustness Test
As MARL and eGCN are the two key components of MARL-
eGCN, we conduct an ablation study on Whole Net to in-
vestigate the contribution of these components. The traffic
throughput results are shown in Fig 5(a), and the convergence
comparison results are shown in Fig 5(b).

First, by comparing MARL-eGCN with MARL, we can
see that after removing eGCN, MARL gets 2% lower traffic
throughput and 20% larger number of episodes for conver-
gence, compared with MARL-eGCN. Then, we remove both
MARL and eGCN, and compare MARL-eGCN with DPG-
β. Results show that MARL-eGCN outperforms DPG-β with
3.5% improvement in terms of traffic throughput and only
half number of training episodes for convergence.

To compare tolling schemes under different traffic settings,
we vary one parameter and keep other parameters fixed for
further evaluation. Figure 6 depicts traffic throughput ob-
tained from different pricing schemes under different parame-
ter settings where x-aixs is the value of parameter under eval-
uation and y-axis is the traffic throughput (in thousands). As
shown in Figure 6(a), the traffic throughput increases linearly
w.r.t the increasing initial state except for PG-β and its vari-
ants that are more unstable under various initial states. In
Figure 6(b), all models are sensitive to the changing initial
demand, which is intuitive because OD demand is the main
factor that impacts the traffic throughput. Similarly in Fig-
ure 6(c), with higher cost rate, traffic throughput increases
nearly for all tolling schemes among which PG-β is more
sensitive to the cost rate. Under different maximum price
rates, in Figure 6(d), MARL-eGCN outperforms other meth-
ods. By adding more agents, as illustrated in Figure 6(e),
we found that MARL-eGCN gets the largest traffic through-
put under 8 agents and traffic throughput decreases with over

8 agents, while for MARL, the optimal number of agents is
6. This is because more agents makes learning harder due to
feature redundancy and larger coordination overhead, while
fewer agents cannot leverage the power of multi-agent learn-
ing. In general, MARL-eGCN outperforms existing tolling
methods under all settings, and is consistently better than the
state-of-the-art method PG-β. Compared with a single super
agent which may lead to sub-optimal behaviours in some en-
vironments, our MARL approach can be more general and
adaptive to various scenarios.

6 Conclusion
To scale up the state-of-the-art RL-based approaches to the
DETC problem, we propose a novel learning architecture
called MARL-eGCN. The two intrinsic ideas of MARL-
eGCN are: (i) we design a problem-specific cooperative
multi-agent RL framework to decompose the huge state and
action spaces into sub-spaces and solve the DETC problem
in a divide-and-conquer manner, and (ii) we devise an edge-
based GCNs representation of the value and policy functions
for the tolling agents, so as to exploit the inter-correlations
among edges in the road network. By performing extensive
experimental evaluations on a real-world traffic network in
Singapore, we show that MARL-eGCN significantly outper-
forms the state-of-the-art approaches in terms of both traffic
throughput and training efficiency, and is able to handle real-
world sized DETC problems.
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