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ABSTRACT
When a new cyber-vulnerability is detected, a Common Vulner-

ability and Exposure (CVE) number is attached to it. Malicious

“exploits” may use these vulnerabilities to carry out attacks. Unlike

works which study if a CVE will be used in an exploit, we study the

problem of predicting when an exploit is first seen. This is an im-

portant question for system administrators as they need to devote

scarce resources to take corrective action when a new vulnerability

emerges. Moreover, past works assume that CVSS scores (released

by NIST) are available for predictions, but we show on average that

49% of real world exploits occur before CVSS scores are published.

This means that past works, which use CVSS scores, miss almost

half of the exploits. In this paper, we propose a novel framework to

predict when a vulnerability will be exploited via Twitter discussion,

without using CVSS score information. We introduce the unique

concept of a family of CVE-Author-Tweet (CAT) graphs and build

a novel set of features based on such graphs. We define recurrence

relations capturing “hotness” of tweets, “expertise” of Twitter users

on CVEs, and “availability” of information about CVEs, and prove

that we can solve these recurrences via a fix point algorithm. Our

second innovation adopts Hawkes processes to estimate the num-

ber of tweets/retweets related to the CVEs. Using the above two

sets of novel features, we propose two ensemble forecast models

FEEU (for classification) and FRET (for regression) to predict when

a CVE will be exploited. Compared with natural adaptations of past

works (which predict if an exploit will be used), FEEU increases F1

score by 25.1%, while FRET decreases MAE by 37.2%.
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• Security and privacy; • Computing methodologies → Ma-
chine learning; • Networks → Network algorithms;
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1 INTRODUCTION
The number of software vulnerabilities disclosed every year is stag-

gering (cf. Figure 1), leading to increasing risks for system security

officers. Because patching is expensive (time for patch installation

time, patch purchase and risk of disruption to production systems),

many vulnerabilities go unpatched because of limited resources

to tackle thousands of patching tasks.
1
It is therefore critical that

we prioritize patching by predicting when a vulnerability will be

exploited. Intuitively, vulnerabilities that exist in an enterprise that

are likely to be exploited soon should be patched before those that

might be exploited later.
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Figure 1: Number of CVEs published by NIST in the NVD
over the past decade.

When a white hat hacker or security firm reports a new vulner-

ability, a Common Vulnerability and Exposure (CVE) numbering

authority
2
assigns a CVE number to it at time tcve . Later, after

analysis of the vulnerability, the US National Institutes of Standards

and Technology (NIST) releases a Common Vulnerability Scoring

System (CVSS) score at time tcvss > tcve . For instance, on Jul.

31, 2017, MITRE assigned CVE-2017-11882 to a new vulnerability,

along with the comment: A variety of Microsoft Office versions, in-
cluding Microsoft Office 2007, 2010, and 2016, allow an attacker to run
arbitrary code in the context of the current user by failing to properly
handle objects in memory, aka “Microsoft Office Memory Corruption
Vulnerability”. This vulnerability was exploited on Nov. 22, 2017,

but a CVSS score was released only on Dec. 15 2017. Though the

information disclosed at this stage is limited, it can provide enough

information for hackers to craft attacks.

If tecve is the earliest time at which a given CVE is exploited,

then we must consider two cases: (i) tcvss ≤ tecve . In this case, an

1
https://www.forbes.com/sites/jasonbloomberg/2018/04/16/to-patch-or-not-to-

patch-surprisingly-that-is-the-question/#6eb7f8ff58fe

2
The National Cybersecurity FFRDC at MITRE Corporation is the principal CVE

numbering authority.
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exploit uses the vulnerability after NIST assigns a CVSS score to it.

(ii) tecve < tcvss . In this case, the vulnerability is exploited before

NIST assigns the CVSS score. There have been various past works

on predicting if a vulnerability will be exploited. However, most of

these past works are methodologically flawed:

• [8, 22] use 10-fold cross validation. Because 10-fold cross-

validation splits data randomly into 10-folds, the 9 folds

used for training will almost certainly contain data from the

future, and then use those to “predict” some exploits used in

the past. This happens because they ignore the fact that the

time frames tcve , tcvss and t
e
cve must be taken into account.

This flaw was also described in [2, 4].

• The later two studies [2, 4] however have another flaw. They,

along with other past works on this problem, assume that

CVSS scores are available at the time of prediction. However,

as shown in Figure 2, there is a gap of several months be-

tween tcve and tcvss . In fact, on average, tcvss −tcvs is 132.7
days. In our dataset spanning July 1 2016 to May 31 2018,

we found that over 85% of PoC exploits and 49.46% of real

world exploits occur during this gap. Because all past works

on this problem including [4] and [2] use CVSS scores, they

too end up using data from the future (CVSS scores) to make

predictions about the past.
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Figure 2: Time between the date NIST publishes CVSS score
of a CVE and the date MITRE assigns a CVE ID to that CVE.

Moreover, all past efforts only try to predict if a CVE will be used in
an exploit, not when. However, knowing when a CVE will be used

is very important. System security officers need to prioritize which

vulnerabilities to patch and when because patching is expensive.

Intuitively, higher priority should be given to vulnerabilities that

are likely to be exploited soon. We make the first attempt to predict

when a vulnerability will be exploited, using only CVE IDs and
Twitter discussion datawithout the need for CVSS scores. We further

make the following contributions:

• First, to capture the popularity property of the CVEs, we

propose the novel concept of a family of CVE-Author-Tweet

(CAT) graph whose nodes are CVEs, Authors (Twitter user),

and Tweets, respectively. We define recursive equations link-

ing three popularity measures: the “hotness” of a tweet men-

tioning a CVE, the “expertise” of authors speaking about

CVEs, and the “availability” of information about a CVE. We

propose a Tri-Fixpoint Algorithm (TFIX) to solve this system
of equations and prove that it has a unique solution that

TFIX is guaranteed to find. These popularity measures add

new features for our forecasting problem.

• Second, because our data is time-sensitive, all our testing uses

the first ttrain units of time for training, and then predicts

out for the remaining time. As we cannot look at tweets after

ttrain , in order to improve prediction, we apply a Hawkes

process model to estimate the retweet volume of a CVE

after the training period. While retweet volume prediction

with Hawkes process models was first proposed in [27], our

contribution lies in applying it to get a new set of features

for exploit timing prediction.

• Third, as shown in Figure 3, our FEEU (Forecasting Ensemble

for Exploit Timing) and FRET (Forecasting Regression for Ex-
ploit Timing) predictors use an ensemble of retweet volume

predictor with classical machine learning models. It extracts

three types of features, i.e., basic Twitter discussion features

which are used in prior art, the CVE popularity score fea-

tures which are extracted from the CAT graphs we defined,

and the future retweet volume feature that is obtained from

the Hawkes process predictor.

• We conduct extensive experiments to evaluate FEEU and

FRET. Though there are no past works that predict when a

CVE will be exploited, we show that FEEU and FRET aver-

agely outperform natural adaptations of past work [2, 4, 8,

22, 26] by 25.1% for classification (in terms of F1 score) and

37.2% for regression (in terms of MAE). Our methods are sta-
tistically better than adaptations of past works with p-value

< 0.001. FRET is able to accurately predict the time of PoC

exploits within 36 days and the time of real-world exploits

within 12 days. We also show through case studies that FEEU
and FRET are able to predict the real-world exploits of the

two popular CVEs in 2017 with high probability.

2 PROBLEM DESCRIPTION
2.1 Vulnerability Exploit Prediction Problem
There are two types of exploits. Real-world exploits are exploits that
were used in real-world attacks, while proof-of-concept (PoC) exploits
are ones where someone (usually a white hat) generates sample

exploit code to demonstrate the vulnerability. As shown in Figure 1,

thousands of vulnerabilities are disclosed each year, and the number

of vulnerabilities being disclosed is increasing. Because of this,

system security officers (SSOs) should patch vulnerabilities as soon

as possible. However, this is not always done because patching

induces considerable cost [9] (e.g. patch installation time, patch

purchase, disruption to production system, etc.). Predicting when

a vulnerability will be exploited is therefore incredibly helpful in

determining what to patch and when.

2.2 Related Work
Several past studies have used machine learning to predict if a

vulnerability will be exploited — but none predict when. [3] were
the first to use machine learning for PoC exploit prediction. The

features used were derived from the OSVDB
3
(Open Source Vulner-

ability Database) [13] and CVE [6]. [8] used several ML approaches

3
OSVDB is no longer publicly available since 2016.
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Figure 3: General framework of FEEU and FRET. FEEU predicts whether a CVE will be exploited within the next 1/3/6/9/12
months. FRET predicts exactly the date at which a CVE will be exploited.

Table 1: Related work on vulnerability exploit prediction.

Paper Datasets ML approach Task Notes

[3] OSVDB, MITRE Linear SVM PoC The first work on ML-based vulnerability exploit prediction

[22] NVD, OSVDB, Twitter, EDB, Symantec Linear SVM PoC & real First to use social media

[8] NVD, RF, EDB, Symantec SVM, RF, NB PoC RF (Recorded Future) is commercial

[4] NVD, EDB, Twitter Linear SVM PoC Studies the effect of train/test splits and imbalance of data

[2] NVD, EDB, ZDI, DW, Symantec SVM, RF, NB, LR real ZDI (Zero-Day Initialtive) is commercial

[26] NVD, EDB, DW Embedding + SVM/RF real First to use paragraph embedding for feature pre-processing

with features derived from the National Vulnerability Database

(NVD) [19] and ground truth from EDB [23]. These two studies

predict PoC exploits rather than real world exploits. [22] developed

methods to predict both PoC and real-world exploits. They obtained

ground truth about real-world exploits from the Symantec Attack

Signature [25] and Intrusion Protection Signature [24] data and

from the NVD and OSVDB. They were the first to show that pre-

diction accuracy could be improved by using (one year of) Twitter

data. Bullough et al. [4] at MIT pointed out major drawbacks in

previous studies. Because [3, 8, 22] did not consider the temporal

relationship between the time tcvss NIST publishes the CVSS score

for a CVE and the time tecve when an exploit using the CVE is first

seen, they used 10-fold cross validation. In 10-fold CV, the data

is randomly split into 10-folds. Iteration over the 10-folds is done

by selecting one fold for testing, and training the model on the

remaining 9 folds. The problem with this approach is that the test

fold may contain data from the past, while the training folds might

contain data about the future. As a result, prediction results are

flawed because it is much easier to predict the past than the future.

Real-world exploits were recently studied in [2], where, in addi-

tion to NVD and EDB
4
, data from the Zero Day Initiative (ZDI) [12]

and darkweb and deepweb (DW) posts are used. The ground truth is

derived from the Symantec Attack Signature and Intrusion Protec-

tion Signature. Different machine learning algorithms are examined

for the final prediction, including SVM, NB, LR and RF. Further ex-

ploration of DW data was made in [26], where DW posts were

preprocessed with the paragraph embedding [18]. The embeddings

are used as additional features.

Table 1 provides a summary of papers related to vulnerability

exploit prediction. In addition to the flaw of using cross validation

instead of a rolling window prediction (which is more appropriate

for temporal data), all existing studies (except one who used the

4
Note that EDB is used to extract features, not ground truth.

OSVDB which is no longer publicly available [3]) cited above use

CVSS scores which, as shown in Figure 2, are published on average

132.7 days after CVE numbers are assigned (e.g. by MITRE). Again,

this means that past works use future data (CVSS score) to predict

what happened in the past. In fact, past works show that CVSS

scores appear to be among the most important features. This means

that the results are unreliable, especially as our 23 months of data

shows that 85.75% of PoC exploits and 49.46% of real world exploits

happen before NIST publishes CVSS scores, making the past works

incapable of detecting them before they occur.

2.3 Dataset Description
Our dataset consists of 23 months of data (1/Jul/2016 - 31/May/2018).

CVE [6] We study the set of all CVEs (26, 093 in all) maintained

by MITRE during this time frame. Each vulnerability is assigned a

CVE ID. Figure 4 shows a distribution of the CVEs published over

the 23 months.

CVE-related Twitter Discussion As in past work [22], we ex-

tract all tweets that have the “CVE” keyword in them during the

reference time period. In total, our Twitter dataset contains 632, 873

tweets and 51, 214 authors. Figure 4 shows statistics about Twitter

discussion volume over the target period.

Exploit DB (EDB) [23] Maintained by Offensive Security, EDB is a

CVE compliant archive of public PoC exploits and the correspond-

ing vulnerable software. EDB tells us when a PoC exploit was first

seen for a given CVE. Note that a PoC exploit may use multiple

CVEs, and a CVE might be used in one or more PoC exploits. For

example, CVE-2017-0148 has two associated PoC exploits in the

EDB (exploit41891 and xploit41987). If two or more PoC exploits are

found for one CVE, we use the earliest date among all the exploits

as the date that the CVE was first exploited.

Symantec IntrusionProtection Signature [24] This dataset records
up-to-date real-world exploits of vulnerabilities, together with the
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Figure 4: Distribution of Twitter discussion and CVEs pub-
lished during 01/Jul/2016-31/May/2018. The x-axis denotes
the time in month, the left y-axis is the number of tweets,
and the right y-axis is the number of CVEs published.

reported date that the exploit was first seen. We use this dataset to

generate the ground truth labels for our training and test data.

2.4 Preliminary Data Analysis
In this subsection, we discuss two key facts that motivate our

Twitter-based vulnerability exploit prediction algorithm.

Fact 1. As shown in Figure 2, during our 23-month period of study
(July 1 2016 to May 31 2018), there is an average (resp. median) gap
of 132.7 (resp. 103) days between the time a CVE number is assigned
by MITRE and the time that associated CVSS scores are published by
NIST.

Fact 2. As shown in Figure 5, for CVEs during our period of study,
85.75% of their PoC exploits and 49.46% of their real-world exploits
happened before NIST publishes the CVSS score.

These two facts indicate that a huge portion of vulnerability

exploits cannot be predicted by previous studies since these studies

rely heavily on CVSS scores extracted from NVD. Thus, the overall

goal of this paper is to use the CVE IDs from MITRE’s CVE [6]
dataset, together with features extracted from CVE-related Twitter
data, to predict when the CVE will be used by either 1) a PoC exploit
or 2) a real-world exploit. We propose two broad methods to do

so: we build classifiers to predict whether an exploit will be used

in 1/3/6/9/12 months and then we build a regression model to

predict the exact day when a vulnerability will be exploited. The

two methods complement each other and provide a comprehensive

understanding of vulnerability exploit timing.

3 FORECAST ENSEMBLE FOR EXPLOIT TIME
This section introduces the prediction method. We start by defining

two novel sets of features used by both FEEU and FRET. First,
we define a family of CVE-Author-Tweet (CAT) graphs to define

the intrinsic popularity property of the CVEs under equilibrium.

Second, we apply a separate predictor that estimates future CVE-
related tweet/retweet volume using the Hawkes process model. The

third subsection describes some basic features which are also used

in past work. The basic features, the meta CVE popularity features,

the Hawkes process predictor, plus a suite of ML algorithms are fed

into a late fusion ensemble predictor to generate the final result.
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Figure 5: Distribution of time difference between the date
the PoC (resp. real-world) exploit of a CVE is published in
EDB (resp. Symantec’s Intrusion Protection Signature) and
the date the CVE is published in NVD. The x-axis is the date
of NVD publishing minus the exploit date (in months), and
the y-axis represents the number of exploits.

3.1 Extract Meta-Features from a Multi-Layer
Graph of CVE, Author and Tweets

Graphs have been extensively used in identifyingmalicious URLs[17],

review fraud[1], and predicting spread of malware[14]. In this paper,

we define a novel concept of the CVE-Author-Tweet (CAT) fam-

ily of graphs based on which we define new “popularity” features

of the nodes using a recursively defined linear equation system.

The intuition is that the more “popular” a CVE is in social media

(Twitter exposure in our setting), the more likely that CVE is to be

exploited. Second, the “hotness” of tweets, the “expertise” of the

authors and the “available” information on the CVE are mutually

influenced by each other. We show that this set of equations can be

solved by a Tripartite Fixpoint algorithm (TFIX) and that it returns

a unique solution to the system of equations.

Figure 6: The multi-layer graph model for exploit probabil-
ity prediction which consists of three layers (sub-graphs)
and cross-layer edges. The solid-line edges are within-layer
edges, while the dotted-line edges are cross-layer edges.

3.1.1 CAT: a Multi-Layer Graph Representation of CVE, Author,
Tweet Relations. We now define a directed multi-layer graph[7, 15]

called CAT (CVE-Author-Tweet). Figure 6 is a sample of our multi-

layer CAT graph consisting of three interlinked layers: a CVE-graph,

an author graph, and a tweet graph. We will specify the different

components as follows.
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Tweet graph. A tweet graph GT = (VT ,ET ) is a directed graph

where each node in the set VT is a tweet. We allow three types of

tweet-tweet edges in ET : (i) There is a retweet edge eTji ∈ ET if tweet

vTj is a retweet of tweet vTi . (ii) There are two tweet-cve-tweet edges

eTji , e
T
i j ∈ ET if both tweets vTj and vTi mention the same CVE. (iii)

There are two hashtag edges eTji , e
T
i j ∈ ET if both tweets vTj and vTi

share the same hashtag topic.

Author graph. An author graphGA = (VA,EA) is a directed graph
where each node in the set VA is a Twitter user. An author-author

edge (vAi ,v
A
j ) ∈ EA indicates a relation between two author nodes.

Two types of author-author edges are defined: (i) There is a follower-
followee edge eAji ∈ EA if an author vAj is a follower of vAi . (ii) There

is a mention edge eAji ∈ EA if author vAi is mentioned by vAj .

CVE graph. A CVE graphGC = (VC ,EC ) is a directed graph where

each node vCi ∈ VC represents a CVE. A CVE-CVE edge (eCji ∈ EC

indicates that CVE vCj is linked to CVE vCi . We define: There are

two CVE-tweet-CVE edges eCji , e
C
i j ∈ EC if two CVEs vCi and vCj are

both mentioned in the same tweet.

Cross-layer edges. Except for the edges within each sub-graph

(layer), CAT graphs also contain cross-layer edges: (i) An author-
tweet edge (eATi j ) ∈ E exists if the tweet vTj ∈ VT is created by the

author vAi ∈ VA. (ii) A tweet-CVE edge eTCi j ∈ E exists if the tweet

vTi ∈ VT mentions CVE vCj ∈ EC .

Note that we do not consider direct edges between CVEs and

authors as they are indirectly linked by the tweet nodes. Thus, a CAT

graph G = (GC ,GA,GT ,E) consists of three subgraphs (“layers”),
GT ,GA,GC as well as some additional “cross edges” E across the

layers. With different definitions of edges within each subgraph,

we have 3 types of tweet-tweet edges, 2 types of author-author

edges and 1 type of CVE-CVE edges. This in total constitutes a

combination of 3 × 2 × 1 = 6 types of CAT graphs. For all types of

CAT graphs, the two kinds of cross-layer edges always exist.

3.1.2 Popularity Properties of the Nodes. For each node vxi ,x ∈
{C,A,T }, we define a popularity score ps(vxi ) to measure the im-

portance of a node within the CAT graph, where ps(vAi ) indicates
the “expertise” of the authorvAi , ps(v

T
i ) reveals the “hotness” of the

tweet vTi , and ps(v
C
i ) shows the “availability” of the CVE v

C
i . We

would like the popularity scoring method to satisfy some axioms.

Axiom 1. Consider two identical CAT graphs with one exception.
In the first graph (as compared to the second), there is one node
vxi ,x ∈ {C,A,T } with an additional incoming edge eji from another
node vx

′
j ,x

′ ∈ {C,A,T }. In this case, the node vxi in the first graph
should have a higher popularity score than the same node in the
second graph, i.e. ps(vxi ) ≤ ps ′(vxi ) should hold.

This axiom indicates that a node which has a higher in-degree

in the CAT graph should be more popular.

Axiom 2. Consider two identical CAT graphs with one exception.
In the first graph (as compared to the second), there is one node
vxi ,x ∈ {C,A,T } such that one of its incoming edges (from node
vx

′
j ) is replaced so that it comes from another node vx

′′

k such that the
latter has a higher popularity score than the former. In this case, the

popularity score of vxi in the second graph should be higher than its
popularity in the first graph.

This axiom indicates that if a node is connected to amore popular

node, its popularity score should go up.

3.1.3 Node Popularity under Equilibrium. Based on the axioms

above, we now derive a system of linear equations to define the

equilibrium popularity measure of all the three types of nodes.

Before that, we first define a weighted graph with the following

two types of edge weights.

Definition 1 (Type I edgeweights). The edge weightswxx ′
,x ,x ′ ∈

{C,A,T }, which are determined only by the types (i.e., x ,x ′ = C,A,T )
of the two nodes, are called Type I edge weights.

This weight is used to distinguish the importance of different

types of endpoints of an edge. For instance, an incoming edge from

an author node should have higher importance than an incoming

edge from a tweet node.
5
Note that the Type I edge weights do not

depend on the specific starting/ending endpoints, but only on the

types of the nodes.

Definition 2 (Type II edge weights). The edge specific weights
zxx

′
ji ,x ,x

′ ∈ {C,A,T }, which are determined by the specific starting

endpoint vxj to the ending endpoint vx
′

i of layers Gx and Gx ′ , are
called Type II edge weights.

Type II edge weights capture importance of the start/end points

of an edge. For example, if two authors are connected to the same

author via two author-author “mention” edges, the weights of the

two edges should depend on the number of mentions. Similarly,

if two authors are connected to the same CVE via author-CVE

“mention” edges, the weights should depend on the number of

mentions. For each node, the sum of weights of all outgoing edges

of the same type of edges equals 1, i.e.,∑
exx ′i j ∈G

zxx
′

i j = 1,∀x ′ ∈ {C,A,T }. (1)

These three equations per node (one each for {C,A,T }) normalizes

type II edge weights.

The final edge weightW xx ′
ji from node vxj to node vx

′
i is a prod-

uct of the two, i.e.,W xx ′
ji = wxx ′ · zxx ′

ji . With the above definition

of weights and node popularity score, we define a recursive set of

linear equations to characterize the mutual influence of the popu-

larity scores among the different nodes in the CAT graph. For the

final edge weights, we require the sum of weights of all outgoing

edges from a node to be 1, i.e.,∑
exx ′i j ∈G

wxx ′
zxx

′
i j = 1 (2)

Note that unlike Eq. (1) where the summation includes edges which

go to a same type x ′ of end node, the summation in this equation

includes all the outgoing edges.

We now define our mutually recursive system of linear equations.

First, the popularity score of an author vAi ∈ GA is represented as a

weighted sum of popularity scores of his neighboring authors and

5
As one author can create multiple tweets, an author is on average much more impor-

tant than a tweet.
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1 Input: Edge weights matrixW = ⟨W xx ′
i j ⟩ in the CAT graph;

2 Output: Equilibrium popularity score ps(vx I i), ∀vx I i ∈ G ;

3 Initialize ps(vxi ) = 1, ∀vxi ∈ Gx , ∀x ∈ {C, A, T };
4 while ps(vxi ) does not converge ∀vxi ∈ G) do
5 for vAi ∈ GA do
6 Get ps′(vAi ) using Eq. (3)
7 for vTi ∈ GT do
8 Get ps′(vTi ) using Eq. (4);
9 for vCi ∈ GC do

10 Get ps′(vCi ) using Eq. (5);
11 ps(vxi ) = ps′(vxi ) for each vertex vxi

Algorithm 1: TFIX

tweets. The popularity score of an author is designed to reveal the

“expertise” level of the author on CVEs and exploits.

ps(vAi ) =
∑

eAji ∈GA

wAAzAAji ps(vAj ) +
∑

eATji ∈E
wAT zTAji ps(vTj ). (3)

The popularity score of a tweet vTi ∈ GT is a weighted sum of

its neighbouring tweets, author, CVEs. The popularity score of a

tweet captures the “hotness” of a the tweet.

ps(vTi )=
∑

eTji ∈GT

wTT zTTji ps(vTj )+
∑

eATji ∈E
wTAzATji ps(v jA)+

∑
eCTji ∈E

wTCzCTji ps(v jC )

(4)

The popularity score of a CVE vCi ∈ GC is a weighted sum of the

popularity score of its neighboring tweets and CVEs. The popularity

score of a CVE characterizes the “availability” of information about

a CVE to the public.

ps(vCi ) =
∑

eTCji ∈E
wCT zTCji ps(vTj ) +

∑
eCCji ∈GC

wCCzCCji ps(vCj ). (5)

Since there are no cross-layer edges between the author and CVE

graphs, the author and CVE nodes cannot be direct neighbors.

3.1.4 Equilibrium Popularity Score Calculation and Convergence.
A straightforward way to solve our recursive equations is to itera-

tively perform matrix multiplication until convergence. However,

the sizes of the weight matrix and popularity vector are enormous

(the largest CAT graph constructed on our data has 710,180 nodes

and 205,325,205 edges), and our machines do not have enough

memory to store such large networks. Hence, we develop the Tri-

Fixpoint Algorithm TFIX (Algorithm 11) to calculate the equilibrium

popularity scores. The algorithm starts with a uniform initialization

of the popularity score of all the nodes. It then proceeds in an itera-

tive manner. In each iteration, the popularity scores are calculated

using Eqs. (3)-(5). The process iterates until the popularity score

converges for all the nodes in the CAT graph, which means the

differences of the popularity scores calculated in two consecutive

iterations are within a small threshold.

Theorem 3.1. If the CAT graph is strongly connected, then Algo-
rithm TFIX is guaranteed to converge, and the equilibrium popularity
score calculated is unique.

Proof. With a bit abuse of notation, we denote the weight ma-

trix of CAT asW , and the popularity score vector as s , and the

number of nodes in the CAT graph as n. In our TFIX algorithm,

each iteration is equivalent to performing a matrix multiplication of

the weight matrixW and the popularity score vector s . As a result,
proving Theorem 3.1 is equivalent to proving that there exists a

unique stationary s , such that s =Ws , which is further equivalent

to proving thatW has a unique eigenvector λ = 1.

First, the strong connectivity of our CAT graph implies that the

weight matrixW is irreducible. According to the Perron–Frobenius

theorem for non-negative matrices [10], a non-negative matrix

has a unique largest real valued if it is irreducible. Thus,W has a

unique largest real valued eigenvalue λ0 ∈ R, i.e., there exists an
equilibrium s and a unique λ0 ∈ R such that s = λ0Ws . In the next,

we prove that λ0 = 1.

According to the definition of eigenvalue, the transposeWT
of

W has the same eigenvalue asW . Therefore, we haveWT s ′ = λ0s
′
,

where s ′ is an eigenvector ofWT
. That is

∑
jW

′
i js

′
j = λ0s

′
i , for i =

1, . . . ,n. SubstitutingW ′
i j withWji , and summing up the equations

for each i = 1, . . . ,n, we have∑
i
Wi1s

′
1
+ . . . +

∑
i
Wins

′
n = λ0(s ′1 + . . . + s

′
n ).

By rewriting Eq. (2) in the form ofW and n, the coefficient of each

element s ′i is 1, i.e., ∑
i
Wi j = 1,∀j = 1, . . . ,n.

Thus, we have

s ′
1
+ . . . + s ′n = λ0(s ′1 + . . . + s

′
n ),

which implies that λ0 = 1.

□

Remark 1. While CAT graphs need not always be strongly con-

nected as required by Theorem 3.1, we observed that all the different

types of CAT graphs are very dense graphs, and the TFIX algorithm

converges in all the cases.
6

Remark 2. Our problem resembles HITS [16] where an iterative

algorithm is used to obtain a solution. A major difference is that the

transition (weight) matrix in their problem is a symmetric matrix

(more specifically, a uniform matrix), while the weight matrix in

our problem is not necessarily symmetric. Our problem also has

similarities to the PageRank problem [20], where the row summa-

tion of the weight matrices for both of the two problems is 1. But

PageRank assumes that each node has a probability of transferring

to any other node (i.e., random surfing assumption) causing PageR-

ank’s weight matrix to be strictly positive which is not the case for

us, making the proof of our theorem more complex.

3.2 Predicting Future CVE-Related Retweets
Using Hawkes Process

As discussed previously, we perform a “rolling window” prediction

where we learn models from data seen up to some time t0 (t0 would
be greater than tcve ) and then predict whether the CVE would be

used in an exploit in months (t0+1), (t0+3), (t0+6), (t0+9), (t0+12).
Our 23 months of CVE-related Twitter data shows that 49.6% of

real world exploits occur before the CVSS score is published and

6
Moreover, even if CAT is not strongly connected, we can always treat the separate

subgraphs as strongly connected graphs and extract popularity features from these

subgraphs and then independently apply TFIX to each component.
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the number rises to over 85% for PoC exploits. Clearly, it would

be helpful to know the future number of retweets about a CVE for

making these predictions, but this information would not be in the

training data. We therefore use Hawkes process estimations [11] to
predict future retweet volume of a CVE after t0 (which is when

the training data ends) and then use these estimates to improve

prediction.

A Hawkes process is a self-exciting point-process model describ-

ing cascades of certain events originally used to model earthquakes.

It has since been adapted to predict retweet activities [21, 27]. We

use the Hawkes process model to estimate the number of future

retweets that are related to each currently disclosed CVE. Note that

our contribution does not lie in building the Hawkes process model

for retweet volume prediction, but in applying the retweet volume

prediction in existing works [21, 27] to improve our vulnerability

exploit prediction.

Let Rt denote the total number of tweets (including retweets)

that are related to a CVE. We define the intensity of tweets related

to the CVE at time t as

λt ≡ lim

∆→0

Rt+∆ − Rt
∆

.

Formally, we model the intensity λt as

λ(t) = p(t)
∑

k :tk<t

nkϕ(t − tk ) (6)

where p(t) is the infection rate at time t . Intuitively, the infection
rate captures the probability of a Twitter user retweeting a tweet

when the user is exposed to the tweet. tk ,k = 1 . . . ,Rt is the

occurrence time of the kth tweet/retweet. nk is the degree of the

author node who writes the kth tweet (i.e., the number of followers).

ϕ(·) is a function that describes the exponential decay of tweets

along time defined as follows:

ϕ(s) =
{
c, if 0 < s ≤ s0

c(s/s0)−(1+θ ), if s > s0
(7)

s0 is interpreted as the reaction time of a tweet. c is a small constant.

For a tweet event k related to a given CVE (that happened before

time t ), nkϕ(t −tk ) denotes the intensity of exposures to other users
of the tweet k . Therefore, p(t)nkϕ(t − tk ) can be interpreted as the

estimated intensity of retweet events related to the CVE.

The parameters c, s0 and θ in Eq. (7) can be estimated using re-

gression models. p(t) can be estimated using the following formula:

p̂(t) =
∑Rt
k=1 Kt (t − tk )∑Rt

k=0 nk
∫ t
tk
Kt (t − s)ϕ(s − tk )ds

(8)

where Kt (s) is a smoothing kernel. We use the same triangular

kernel as in [27]:

Kt (s) = max{1 − 2s/t , 0}. (9)

For one thread of tweets/retweets that are related to one CVE,

the final predicted number of tweets plus retweet size is

R̂∞ = Rt + αt p̂t (Nt − N e
t )/(1 − γ p̂tn

∗), (10)

where Nt =
∑Rt
k=0 nk is the sum of degrees of all the authors for the

retweets k =0, . . . ,Rt , N
e
t =

∑Rt
k=0 nk

∫ t
tk
ϕ(s − t)ds is the effective

sum of degrees of the authors for the retweets, n∗ is the average

degree of the tweet network. Nt can be interpreted as the total

number of exposures of a tweet when there is no information

decay, while N e
t considers the decaying effect. αt ∈ [0, 1] and γt ∈

[0, 1] are parameters to offset the overlap of retweet activities of

neighboring tweets. We leave out the derivation of Eqs. (8) and (10)

and refer to [27] for the details. Our final prediction of all the future

tweets/retweets related to a CVE summarizes all the estimated

number of tweets R̂∞ of different individual threads of tweets.

3.3 Basic Features
The set of basic features used in this paper (which are also used in

existing approaches) include #tweets, #retweets, #replies of tweets

and retweets, #tweets favorited, average #hashtags/URLs/user men-

tions per tweet, #verified accounts, average age of accounts, and

average #tweets per account.

3.4 Ensemble Forecasting Model
As shown in Figure 3, our ensemble prediction models FEEU and

FRET utilize a set of basic features, the popularity score features

dervied from the CAT graphs, and the retweet volume features

derived from the Hawkes process predictors, together with a suite

of classical machine learning approaches. We also use rolling pre-

diction as described earlier.

Machine learning models FEEU uses a set of classifiers (Support

Vector Machines - SVM, Logistic Regression - LR, Naive Bayes -

NB, Random Forest - RF, and XGBoost), while FRET uses a set of

regressors Linear, Bayes, Random Forest, XGBoost, Lasso, and Ridge

for predicting the exact date of exploit usage.

Over-sampling Exploit labels are imbalanced for proof-of-concept
exploits, where 1, 459 of 26, 093 CVEs are exploited, and even more

imbalanced for real-world exploits, where 141 are exploited. Thus,
we use SMOTE over-sampling in the classification tasks [5].

Late fusion To further improve prediction, we also perform a late

fusion over our proposedMLmodels. Basically, late fusion enhances

prediction results by combining prediction results of multiple base

ML models, each of which is trained by a specific feature or model.

In our problem, late fusion does a weighted combination of the 5

base classifiers of FEEU for classification, and the 6 base regressors

of FRET for regression.

4 EXPERIMENTAL EVALUATION
In this section, we evaluate the performance of FEEU and FRET. Due
to space constraints, for both classification and regression tasks, we

only show 1) the best of th baselines, 2) results of FEEU/FRET with

different machine learning models, and 3) the late fusion results of

our FEEU/FRET models. The detailed description of experimental

settings is in the supplementary material.

4.1 FRET Regression Results
Table 3 compares the MAE of FRET with the baseslines [2, 4, 8,

22, 26]. The results show that (i) For both PoC and real-world ex-

ploit timing, FRET performs significantly better than the best of the

baselines. In terms of real-world exploit prediction, FRET with late

fusion decreases MAE by 37.2% compared with the best of base-

lines. This demonstrates that the popularity score and future tweet

volume features are able to substantially improve our prediction.
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Table 2: PoC classification, p-value < 0.001

1 month 3 months 6 months 9 months 12 months

Method F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

FEEU-RF 0.297 0.433 0.242 0.319 0.449 0.255 0.291 0.442 0.220 0.273 0.426 0.204 0.255 0.409 0.191

FEEU-XGBoost 0.333 0.401 0.310 0.336 0.408 0.299 0.315 0.406 0.261 0.292 0.380 0.242 0.263 0.362 0.213

FEEU-SVM 0.108 0.125 0.380 0.098 0.105 0.303 0.109 0.120 0.365 0.113 0.160 0.151 0.098 0.140 0.299
FEEU-LR 0.186 0.170 0.253 0.197 0.189 0.223 0.173 0.184 0.272 0.168 0.221 0.142 0.165 0.210 0.231

FEEU-NB 0.265 0.215 0.368 0.29 0.239 0.376 0.287 0.248 0.344 0.288 0.263 0.321 0.287 0.277 0.299
FEEU-LateFusion 0.344 0.399 0.372 0.345 0.444 0.274 0.322 0.446 0.231 0.316 0.438 0.230 0.301 0.442 0.216

best of baselines (SMOTE) 0.248 0.405 0.192 0.271 0.432 0.212 0.265 0.451 0.199 0.260 0.461 0.194 0.259 0.459 0.197

best of baselines 0.171 0.549 0.109 0.187 0.549 0.118 0.181 0.554 0.109 0.181 0.565 0.109 0.172 0.580 0.102

(ii) On average, the MAE of FRET-LateFusion is 35.71 days for PoC

exploit prediction, and 11.90 days for real-world exploit predic-

tion. The small p-value of 0.02 implies that the result is statistically

significant.

Table 3: Rolling FRET regression MAE results, p-value=0.02

PoC Real-world

FRET-Bayes 36.50 11.95

FRET-RandomForest 45.06 19.75

FRET-XGBoost 38.54 19.95

FRET-LateFusion 35.71 11.90
best of baselines 50.04 18.95

4.2 FEEU Classification Results
To further evaluate the advantage of our two proposed sets of

novel features, we decompose the regression task into a suite of

classification tasks, which is predicted by the FEEU framework. For

classification, we compare the F1 score, precision and recall with

the baselines from [2, 4, 8, 22, 26]. Though the baselines didn’t use

sampling techniques, we present the baseline results both with and

without SMOTE oversampling.

PoC Exploits Rolling Classification Table 2 shows the predic-

tion results for PoC exploits. We note that: (i) In all cases, the F1
scores and recalls of the baselines are improved with SMOTE over-
sampling, while precision is decreased due to the oversampling of
positive labels. (ii) Comparing FEEU with best of baselines with

SMOTE, we see that popularity score features and future retweet
volume features substantially improve performance of PoC prediction
w.r.t. all metrics. Note that the p-value of this comparison is smaller

than 0,001, which implies that this observation is statistically signif-

icant. Although the precision of best of baselines (without SMOTE)

is the highest in all cases, they achieve a very low recall because

without oversampling, the training dataset of the baselines is very

imbalanced towards negative labels. (iii) Nearer-future PoC exploits
are more predictable than longer-term ones. We can see that the best

values of the performance metrics for nearer-future PoC predictions

are higher than those for longer-term predictions. This observation

is also demonstrated in Figure 7(a). (iv) Late fusion yields significant

improvement compared with the best of base FEEU classifiers in

terms of F1 score.

Real-World Exploits Rolling Classification Table 4 shows the

rolling prediction results for real-world exploits. We see: (i) similar

results to those for PoC exploit prediction are achieved - in par-

ticular, trend of prediction accuracy (cf. Figure 7(b)) is similar. (ii)

1m 3m 6m 9m 12m

0.30

0.35

0.40

0.45

F1 Precision Recall

(a) PoC tasks

1m 3m 6m 9m 12m
0.4

0.5

0.6

0.7

F1 Precision Recall

(b) Real-world tasks

Figure 7: Average performance for PoC and real-world
rolling prediction tasks. X-axis denotes different prediction
windows. Y-axis represents the metrics value.

We can see that, while FEEU with XGBoost has sometimes slightly

lower precision than best of baselines (with or without SMOTE

oversampling), it generally has much higher recall and F1 score

values, with a p-value smaller than 0.001. Using late fusion over our

FEEU models, we are able to increase F1 score by 25.1% compared

with the best of baselines with oversampling.

4.3 Case Study
To further demonstrate the effectiveness of FEEU and FRET, we
now discuss case studies of two of the most popular CVEs in 2017.

CVE-2017-0143 was involved in the infamous “EternalBlue” ex-

ploit targeting a Windows OS vulnerability (in its Samba protocol

implementation) to carry out massive ransomware attacks. This

CVE was created on 09/09/2016 and its first PoC exploit occurred on

04/14/2017 (217 days later). The CVE is discussed by 1, 570 tweets

and 1, 080, 049 retweets. It has an average popularity score of 46.5

compared with 25.3 of the others. The retweet volume of CVE-

2017-0143 predicted by the Hawkes process model is 13.3 times the

average value for the other CVEs. Our proposed FEEU framework

gives a high probability > 0.60 that the CVE will be exploited in

six months. FRET framework predicts the CVE will be exploited in

113.84 days (compared with the ground truth of 189 days).

CVE-2017-11882 is a vulnerability in MS Office which allows

malicious code to be remotely executed and takes over the machine

to carry out its will. The CVE was assigned on 07/31/2017 and

the first exploit occurred on 11/22/2017 (114 days later). This CVE

triggers 6, 404 tweets and 756, 761 retweets. The average popularity

score by of this CVE is 89.87 compared with 27.6 of the others. The

total retweet volume predicted by the Hawkes process model is

19.7 times the average value of all the other CVEs. FEEU gives high

probability (> 0.9) that this CVE will be exploited in three months.
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Table 4: Real-world exploit prediction, p-value < 0.001

1 month 3 months 6 months 9 months 12 months

Method F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall F1 Precision Recall

FEEU-RF 0.435 0.619 0.373 0.487 0.640 0.432 0.432 0.656 0.352 0.332 0.622 0.249 0.276 0.580 0.200

FEEU-XGBoost 0.553 0.549 0.671 0.569 0.545 0.660 0.507 0.569 0.511 0.497 0.606 0.472 0.407 0.589 0.345

FEEU-SVM 0.030 0.016 0.431 0.048 0.026 0.518 0.052 0.029 0.518 0.050 0.033 0.344 0.051 0.034 0.421

FEEU-LR 0.065 0.039 0.334 0.054 0.032 0.252 0.053 0.035 0.144 0.056 0.037 0.176 0.055 0.037 0.114

FEEU-NB 0.330 0.281 0.655 0.343 0.254 0.689 0.346 0.252 0.673 0.355 0.256 0.663 0.365 0.267 0.608
FEEU-LateFusion 0.326 0.277 0.655 0.593 0.558 0.682 0.523 0.564 0.491 0.514 0.577 0.439 0.488 0.590 0.320

best of baselines (SMOTE) 0.477 0.664 0.413 0.452 0.671 0.392 0.349 0.616 0.268 0.260 0.590 0.186 0.158 0.529 0.103

best of baselines 0.290 0.587 0.207 0.283 0.691 0.193 0.203 0.599 0.123 0.113 0.501 0.064 0.031 0.345 0.016

FRET predicts the CVE will be exploited in 117.32 days (compared

with the ground truth of 114 days).

5 CONCLUSION AND FUTUREWORK
In this paper, we show that existing studies are flawed in the sense

that they utilize information from the future (CVSS scores) in pre-

dicting if a CVE will be exploited. To address this issue, we make the

first attempt to predict when a vulnerability will be exploited before
NIST assigns CVSS scores to the CVEs, using only Twitter discussion
data and the CVE IDs assigned by MITRE. Furthermore, we are the

first to predict not only if, but also when exploits will take place. To

improve prediction, we propose the FEEU and FRET frameworks

with two sets of novel features. First, we design a set of meta CVE

popularity features which are derived from constructing a family

of multi-layer graphs. The popularity features are defined in a mu-

tually reinforcing manner. The calculation of which is solved with

the proposed TFIX algorithm with proofs of the convergence and

uniqueness properties. Second, we apply the Hawkes process model

to estimate the future retweet volume of a CVE as an additional

feature. Though no existing studies have addressed the problem

of when a CVE will be exploited, the experimental results show

that, in terms of F1 score, FEEU outperforms natural adaptations

of existing studies by 25.1% on average. Moreover, FRET predicts

the day on which a vulnerability will be exploited (from the date

of CVE assignment) and is shown to be accurate to 35.71 days on

PoC exploits and 11.90 days on real world exploits. Potential future

work includes predicting vulnerability exploits with cross-platform

dataset (e.g., Reddit, Facebook, Deepweb and Darkweb), and using

the prediction results to prioritize vulnerability patching within an

optimization framework.
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Table 5: Weights of FRET base regressors in late fusion

Tasks Linear

Regression

Bayesian

Regression

Randomforest

Regression

XGBoost

Regression

Lasso

Regression

Ridge

Regression

PoC 0 0.8 0.2 0 0 0

real world 0 0.67 0 0.33 0 0

A CONFIGURATIONS
Hardware: The server we host our project is equipped with 24-core
Intel E5-2650 CPU and 64GB RAM.

Software: The project is written in Python with version 3.7.0.

Specifically, we use pandas 0.23.4 and nltk 3.4 for data process-

ing, numpy 1.16.0, and numba 0.42.0 for scientific computation,

scikit-learn 0.20.2 and xgboost 0.81 for implementation of basic

classifiers and regressors, and imbalanced-learn 0.4.3 for sampling

techniques.

B ROLLING PREDICTION SETTING
For each month, we use all the prior Twitter discussion data to make

the prediction. For our proposed classifier FEEU, we predict whether
the newly published CVEs are going to be exploited in the next 1, 3,

6, 9, 12 months.We start the rolling prediction from 01/01/2017, thus

17 months are involved in the 1-month prediction task, 15 months

are involved in the 3-month prediction task respectively, etc. For

our proposed regressor FRET, we predict when the newly published

CVEs are going to be exploited. Similarly, in the regression task,

we start the rolling regression from 01/01/2017 to 01/01/2018 with

1-month window.

Model parameters: Table 6 shows the parameters for the rolling

window predictions and the rolling regressions.

Table 6: Model parameters

Models Parameters

Randomforest Classifier # trees=100

XGBoost Classifier # trees=100

SVM kernel=linear, C=100

Logisitic Regression regularization=L2

Naive Bayes kind=Bernoulli

Randomforest Regression # trees=100

XGBoost Regression # trees=100

Late fusion: The late fusion model in FEEU classification task take

advantage of five classifiers, namely, Randomforest (RF), XGBoost,

SVM, Logisitic Regression (LR), and Naive Bayes (NB). In FRET
regression task, the late fusion model uses six regression models,

including Linear Regression, Bayesian Regression, Randomforest

Regression, XGBoost Regression, Lasso Regression, and Ridge Re-

gression. In both tasks, the late fusion models learn weights from

the data prior to 01/01/2017. Specifically, we train the basic models

with 80% of the data and optimize the objective by searching the

weights of the models. Tables 5 and 7 show the weights of the late

fusion models.

Table 7: Weights of FEEU base classifiers in late fusion

Tasks RF XGboost SVM LR NB

PoC 1m 0.0 0.8 0.0 0.0 0.2

PoC 3m 0.36 0.18 0.18 0.0 0.27

PoC 6m 0.45 0.18 0.0 0.0 0.36

PoC 9m 0.44 0.0 0.22 0.11 0.22

PoC 12m 0.5 0.0 0.0 0.0 0.5

real world 1m 0.0 0.0 0.0 0.0 1.0

real world 3m 0.0 0.5 0.25 0.0 0.25

real world 6m 0.4 0.2 0.0 0.0 0.4

real world 9m 0.0 0.5 0.0 0.0 0.5

real world 12m 0.18 0.36 0.0 0.0 0.45
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