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Abstract

As one of the most powerful topic models, Latent Dirichlet
Allocation (LDA) has been used in a vast range of tasks, in-
cluding document understanding, information retrieval and
peer-reviewer assignment. Despite its tremendous popularity,
the security of LDA has rarely been studied. This poses severe
risks to security-critical tasks such as sentiment analysis and
peer-reviewer assignment that are based on LDA. In this pa-
per, we are interested in knowing whether LDA models are
vulnerable to adversarial perturbations of benign document ex-
amples during inference time. We formalize the evasion attack
to LDA models as an optimization problem and prove it to
be NP-hard. We then propose a novel and efficient algorithm,
EvaLDA to solve it. We show the effectiveness of EvaLDA
via extensive empirical evaluations. For instance, in the NIPS
dataset, EvaLDA can averagely promote the rank of a target
topic from 10 to around 7 by only replacing 1% of the words
with similar words in a victim document. Our work provides
significant insights into the power and limitations of evasion
attacks to LDA models.

Introduction
Latent Dirichlet Allocation (LDA) is one of the most pow-
erful topic models. Due to its superiority in discovering the
latent topics of documents, it has been the underlying tech-
nique in a vast range of tasks, including scientific publica-
tion understanding (Griffiths and Steyvers 2004; Talley et al.
2011), information retrieval (Harvey, Crestani, and Carman
2013), and peer-reviewer assignment (Charlin and Zemel
2013; Liu, Suel, and Memon 2014). Despite the great suc-
cesses, the security of LDA-based systems has rarely been
investigated. Security-critical tasks based on LDA, such as
sentiment analysis and peer-reviewer assignment, are there-
fore at high risk of being manipulated by carefully designed
adversarial attacks. For instance, by promoting the rank of a
target topic for an article, it may end up in hands of colluded
reviewers who are experts in the target topic. Recent studies
show that machine learning (ML) methods are highly vul-
nerable to adversarial samples with simple and yet evasive
perturbations to the benign input data (Szegedy et al. 2014;
∗These authors contributed equally to this work.
†Corresponding authors.
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Goodfellow, Shlens, and Szegedy 2015). In this paper, we
are interested in knowing – are LDA models vulnerable to
crafted adversarial samples?

There are in general two types of adversarial attacks to ML
models, namely poisoning attacks and evasion attacks (Bar-
reno et al. 2010). Poisoning attacks aim to mislead a ML
model by manipulating the training data, while evasion at-
tacks craft malicious samples to mislead a trained ML model
during test time. While there has been pioneer work (Mei
and Zhu 2015) studying poisoning attacks to LDA models,
no efforts have been made on investigating evasion attacks to
LDA models. We present the first study of this kind. More
specifically, we study evasion attacks to LDA models that are
trained/inferred using the predominant Monte Carlo simula-
tion based method called Collapsed Gibbs Sampling (CGS).1

Though evasion attacks of general ML models have been
massively studied (Nguyen, Yosinski, and Clune 2015; Car-
lini and Wagner 2017; Xiao et al. 2018; Ling et al. 2019),
the unique characteristics of LDA models poses several new
challenges on performing evasion attacks to them. First, the
input of an LDA model is a document, and is essentially
textual data. Different from evasion attacks in domains like
images (Nguyen, Yosinski, and Clune 2015; Carlini and Wag-
ner 2017), textual data are intrinsically discrete, thus incur-
ring higher difficulties to find optimal perturbations to benign
samples. Second, because the input of an LDA model is an
entire document, the strategy space of crafting a malicious
document is huge, especially with a large document. Last and
most importantly, unlike general ML models which usually
infer the output via a simple forward pass (e.g., in neural
networks and decision trees) from the input, the inference
procedure of CGS-based LDA models involves a much more
complicated Monte Carlo simulation process. This makes
the gradient-based style attacks infeasible and trial-and-error
style attacks extremely inefficient. 2

In recent years, studies on evasion attacks to ML mod-
els for NLP tasks have drawn great attention from both the

1Another popular training/inference method for LDA models is
the Variational Inference (VI) method. The two methods are distinct
in the training/inference procedure. We focus on CGS based LDA
models and leave VI based LDA models for future work.

2Note that the inference procedure for VI based LDA models is
essentially an optimization. Therefore evasion attack to VI based
LDA models is equally, if not more challenging.



ML and NLP communities (Papernot et al. 2016b; Ren et al.
2019; Jin et al. 2020; Behjati et al. 2019). However, most of
them focus on sentence level adversarial samples, where the
strategy space is much smaller than document level inputs of
LDA models. More importantly, as discussed above, a key
difference of LDA and general ML models is the computa-
tionally expensive inference procedure of a new input. Due
to these reasons, previous works on evasion attacks to ML
based NLP models cannot be applied to our problem.

We present the first study on evasion attacks to LDA. Note
that our goal is not to attack the LDA models, but to provide
better insights of the power and limitations of such attacks,
so that appropriate defense mechanisms can be designed to
prevent the attacks. We first formulate the optimal adversar-
ial attack to LDA models as a combinatorial optimization
problem. We prove that the formulated problem is NP-hard
by reducing the combinatorial optimization problem with
cardinality constraints (COPCC) (Bruglieri et al. 2006) to it.

To efficiently solve the formulated optimization problem,
we propose a novel algorithm, efficient Evasion attacks to-
wards LDA models (EvaLDA), with two key novelties. First,
to handle the high computational cost of the inference pro-
cedure and thus the difficulty of estimating an adversarial
perturbation’s marginal contribution to the attack objective,
we derive an efficient analytical estimate. The analytical esti-
mate builds upon a carefully designed surrogate procedure for
the CGS-based LDA inference. Second, due to the underly-
ing combinatorial nature of the problem and document-level
large attack strategy space, we design an efficient greedy
algorithm in EvaLDA to solve the optimization problem.
Our contributions i) We are the first to study evasion attacks
to LDA models. The study has significant practical impact
as it provides early warning on the security vulnerability of
LDA models to users and service providers. The derivation of
the attack strategies provides insights into designing defense
strategies against such attacks. ii) We formulate the evasion
attack to LDA models as a combinatorial optimization prob-
lem and prove its NP-hardness. iii) We propose EvaLDA,
a novel evasion attack algorithm to LDA models with key
technical novelties in handling the various new challenges in
the new problem. iv) We conduct extensive empirical evalua-
tions that prove the effectiveness of EvaLDA on two distinct
datasets (i.e., NIPS and AP3) and a large variety of prob-
lem settings. For instance, results on the NIPS dataset show
that, by replacing only 1% of the words to similar words
in a victim document, EvaLDA can averagely promote the
rank of a target topic from 10 to around 7. We also show the
effectiveness of EvaLDA via a case study. The code of this
paper can be found at https://github.com/tools-only/Evasion-
Attack-against-LDA-Model.

Related Work
Our work lies in the thread of research that studies evasion
attacks to ML models for NLP tasks. Similar to most prior
works, we aim at two goals in evasion attacks to textual data:
to deteriorate the performance (e.g., accuracy) of the victim
model and to keep the adversarial perturbations evasive.

3Links to the datasets are in the experiment section.

Gradient-based attack. Papernot et al. (2016b) make an
early attempt at adversarial attacks to recurrent neural net-
works (RNNs) based NLP models. They calculate words’
marginal contributions of classification using Fast Gradient
Signed Method FGSM (Goodfellow, Shlens, and Szegedy
2015) and Forward Derivative (Papernot et al. 2016a). FGSM
is also used in Samanta and Mehta (2018). They consider
replacement, insertion and deletion operations to generate ad-
versarial samples. In finding word replacements, they build a
candidate replacement pool using synonyms, typos and genre
specific keywords. Liang et al. (2018) calculate the character-
level marginal contribution of text classification from cost
gradient, and treat a word as multiple characters. This type of
attacks are called “white-box” attacks as computing gradients
requires knowledge about the victim model.

Black-box attack. Opposed to white-box attacks which re-
quire full knowledge about the victim model or its gradi-
ent information, black-box attacks only require knowledge
about the outputs of the victim model via queries. Ren et al.
(2019) study black-box attacks on text classification models.
They calculate words’ marginal contribution of text classi-
fication by masking out the underlying words. They also
propose a scheme called probability weighted word saliency
(PWWS), which considers lexical, grammatical, and semantic
constraints in generating adversarial samples. Similar word
selection method is used in (Jin et al. 2020), where adversarial
attacks to BERT model (Devlin et al. 2019) are studied. They
use word embeddings to extract synonyms of the selected
words for replacement, subject to post-processing which en-
sures the semantics and syntax of the adversarial sentence.
Alzantot et al. (2018) propose an adversarial text genera-
tion approach based on genetic algorithm, while Zhang et al.
(2019) use a Markov chain Monte Carlo sampling approach.

Attack from embedding space. Compared with the above
methods which work directly in discrete word or character
space, Miyato, Dai, and Goodfellow (2017) propose to gen-
erate adversarial texts from the continuous embedding space.
Similarly in (Behjati et al. 2019), adversarial perturbation is
performed in the embedding space using loss gradient maxi-
mization. The obtained optimal perturbation is then projected
back into the vocabulary space to find a feasible replacement.
Sato et al. (2018) improve over (Miyato, Dai, and Goodfellow
2017) by interpretable perturbation approach which restricts
perturbation to be existing points in the embedding space.

Poisoning attack to LDA. Most of the above studies on se-
curity aspects of NLP models focus on deep ML models such
as RNNs (Mikolov et al. 2010) and Transformers (Vaswani
et al. 2017), while little attention has been paid to the security
of LDA models. A more related work is Mei and Zhu (2015),
which also studies adversarial attack to LDA models. How-
ever, it is notably different from our work. First, they study
poisoning attack, where the entire training corpus are target
documents, whereas we study evasion attack. From a prac-
tical point of view, poisoning attacks are more difficult than
evasion attacks, as it requires edit access to the entire training
corpus. Second, they focus on VI (Blei, Ng, and Jordan 2003)
based parameter estimation, while we study CGS (Griffiths
and Steyvers 2004) based parameter estimation.



Preliminaries
As a reminder, LDA is a generative model consisting of K
latent topics. It assumes the following generation process of
a document m with word length N : i) Draw a “document-
topic” distribution θm from a Dirichlet prior θm ∼ Dir(α).
ii) For each topic zk in the K topics, draw a “topic-word”
distribution ϕk from another Dirichlet prior: ϕk ∼ Dir(β).
Here ϕk specifies the probability distribution that the v-th
word in a vocabulary Vvocab belongs to topic zk. α and β
are hyperparameters implying prior knowledge about the
shape of the Dirichlet distributions. iii) For each of the N
positions of the document, first sample a topic k ∼ θm, and
then sample a word w ∼ ϕk.

Given a set of M training documents w = 〈wm〉,m =
1, . . . ,M , the training process works by finding the param-
eter values θ = 〈θm〉,m = 1, . . . ,M and ϕ = 〈ϕk〉, k =
1, . . . ,K that maximizes the posterior P (z|w; θ, ϕ). z =
〈zk〉, k = 1, . . . ,K is a vector of latent topics. Since calculat-
ing this posterior is computational intractable, two common
approximations methods are used, namely variational infer-
ence (VI) (Blei, Ng, and Jordan 2003) and collapsed Gibbs
sampling (CGS) (Griffiths and Steyvers 2004). In this paper,
we focus on attacks to the CGS-based LDA models.
CGS-based inference. Different from training time where
both the document-topic distribution θ and topic-word dis-
tribution ϕ are updated, during inference time, topic-word
distribution ϕ is usually fixed (Heinrich 2005). This is be-
cause one input sample during inference has very limited
effect to ϕ compared with the entire training corpus.

CGS-based inference is essentially a Markov Chain
Monte Carlo (MCMC) method. Given a document wm =
〈wmi〉, i = 1, . . . , Nm, it works iteratively. In each itera-
tion, it goes through each word wmi in the document wm.
At word wmi, it first samples the topic zk to be allocated
at this position according to the following full conditional
distribution (Griffiths and Steyvers 2004):

p
(
zi=zk|z−i,wm

)
∝ϕki

Nmk + α∑K
k′=1Nmk′+Kα

(1)

where z−i is the topic allocations of all the other words
except wmi. Nmk is the count of topic zk being sampled in
the document before word wmi. After sufficient iterations
(the “burn-in” period), the document-topic distribution θm is
calculated:

θmk =
Nmk + α∑K

k′=1Nmk′ +Kα
, ∀k = 1, . . . ,K (2)

We refer to (Griffiths and Steyvers 2004; Heinrich 2005) for a
detailed description for the training and inference procedures
of LDA models using CGS.

Problem Formulation
Recall that in inference time, LDA maps an unseen test docu-
ment wm into a document-topic distribution θm. An evasion
attack to LDA is to make perturbations to the victim docu-
ment wvic and generate an adversarial sample wadv , so that
the inferred document-topic distribution θvic of the victim

document is changed to θadv 6= θvic. More specifically, we
consider the following adversarial word replacement attack.4

Definition 1. The adversarial word replacement attack on
LDA (Attack-LDA) problem aims to replace a subset of words
W by a new set of words W ′, so that the victim document
wvic is changed into an adversarial document wadv, and a
certain attack objective Q(W,W ′) is maximized.

Here we refer to (W,W ′) as the attack strategy. A word
w ∈ W is called a target word, and a word w′ ∈ W ′ is called
replacement word. Note that the specific form of the attack
objective Q(W,W ′) is dependent on the goal of attack. For
instance, in a rank promotion attack, the goal is to maximize
the increase of probability for a target topic zk, i.e.,

Q(W,W ′) = θadvk − θvick (3)

In an rank demotion attack, the goal is to maximize the
decrease of probability for the target topic zk, i.e.,

Q(W,W ′) = θvick − θadvk (4)

Attack budget. As introduced in the Related Work Section,
another key aspect of an evasion attack is to make mini-
mal changes to the victim document, so as to make the
attack evasive. This introduces a budget constraint of the
form Dw(w

vic,wadv) ≤ δ, where δ is a threshold, and
Dw(w

vic,wadv) denotes the distance of the two documents
wvic and wadv .

In practical implementation, we break it down into two
types of constraints. One type of constraint specifies that
the distance D(w,w′) of the target word w and the replace-
ment word w′ cannot exceed a threshold σ: D(w,w′) ≤
σ, ∀ (w,w′) ∈ (W,W ′). An example distance measure is
the cosine distance of the two words w and w′ in the vector
space using word embeddings (Bojanowski et al. 2017). The
other type of constraint restricts that the number of words be-
ing replaced cannot exceed a certain percentage κ of the total
number of words in the victim document: |W| ≤ |wvic| · κ.

Formally, we represent the Attack-LDA problem in Defini-
tion 1 as the following optimization problem:

max
W,W′

Q(W,W ′) (5)

s.t. D(w,w′) ≤ σ, ∀ (w,w′) ∈ (W,W ′) (6)

|W| ≤ |wvic| · κ (7)

Theorem 1. Given an oracle that tells the algorithm the
explicit value of Q(W,W ′) for an attack strategy (W,W ′),
the Attack-LDA problem formulated above is NP-hard.

Proof. The key idea is to reduce the (binary) combinatorial
optimization problem with cardinality constraints (COPCC,
which is proven to be NP-hard (Bruglieri et al. 2006)) to
our defined Attack-LDA problem.

An arbitrary instance of COPCC can be expressed as:

min
x
f(x) s.t. x ∈ {0, 1}d : ||x||0 ≤ C, (8)

4We only consider word replacement operation to make the
paper focused. We leave the extension to other types of operations
(e.g., insertion and deletion) as future work.



where x is a d-dimensional binary indicator vector which cor-
responds to the selection of items. That is, xi = 1 indicates
the i-th item is selected and otherwise not. ||x||0 denotes l-0
norm of x.

We then construct a special instance of the Attack-LDA
problem as follows. We first let

Q∗(W) = max
W′

Q(W,W ′)

s.t. D(w,w′) ≤ σ, ∀(w,w′) ∈ (W,W ′).

The Attack-LDA problem is then transformed as

max
W

Q∗(W) s.t. |W| ≤ |wvic| · κ (9)

Because finding the optimal w′ for a given w requires enu-
merating the vocabulary space only once, therefore finding
Q∗(W) is polynomial (O(|wvic| · |Vvocab|)) in the document
size |wvic| and the vocabulary size |Vvocab|.

We construct the correspondence as: d ←→ |wvic|, xi =
1 ←→ wi ∈ W , f(x) ←→ Q∗(W), C ←→ |wvic| · κ. In this
sense, we can easily get that if x is an ”yes” instance of
Eq.(8), then the corresponding W is an ”yes” instance of
Eq.(9) and vice-versa.

EvaLDA: Evasion Attack towards LDA
We can see that a key challenge of solving Eqs.(5)-(7) is to
obtain the objective valueQ(W,W ′) given an attack strategy
(W,W ′). For any type of attack objectives in Eqs. (3)-(4), the
key is then to compute the document-topic distributions θvic
and θadv of the victim and adversarial documents. However,
this is computationally expensive for CGS-based inference
procedure as it involves hundreds or thousands of simulation
iterations. To handle this challenge, we design a surrogate
sampling-based inference procedure, from which we derive
an analytical estimate of the document-topic distribution.

Another key challenge of solving the formulated optimiza-
tion problem, as shown in the NP-hardness of the problem in
Theorem 1, is the high computational complexity that arises
from its combinatorial nature. To scale up EvaLDA, we pro-
pose a greedy algorithm, where we assume independence
of effects on the objective function Q(W,W ′) for different
target-replacement word pairs (w,w′).

Efficient Estimate of Document-Topic Distribution
Surrogate inference procedure. Similar to the original
CGS-based inference, the surrogate inference works itera-
tively, where each iteration goes over all the positions of the
test document wm once. The key difference is that the topic
sampling of each position happens simultaneously in each
iteration. Denote the set of unique words (i.e., vocabulary)
in the test document as V , for each unique word v ∈ V , it is
updated nv times, where nv is the number of times v appears
in the test document.5 Consequently, the calculation of topic
counts happens after the simultaneous sampling step.

5By default, we usew to denote a position word in the document,
and v to denote a unique word in the vocabulary. Therefore in a
document, there is a one to many correspondence from v to w.

Lemma 1. In the above designed surrogate inference proce-
dure, when α→ 0,6 there exists a recursive definition of the
topic distribution θtk for each topic k = 1, . . . ,K:

θtk =
θt−1k

N

∑
v∈V

nvϕkv, (10)

where t is the number of iterations in the CGS procedure, and
N = |wm| is the number of words in the test document wm.

Proof. At iteration t, denote the full conditional probability
of sampling a topic k for word v as ptkv , then ptkv is the same
at each of the nv sampling operations:

ptkv = ϕkv ·
N t−1

k + α

N t−1 +Kα
Here since only the test document wm is involved, we have
omitted the sub-script m for clarity of notation. Because the
surrogate inference procedure goes over the entire document
at each iteration t, the sum of topic count always equals the
total number of words N in the test document. When α→ 0
and Kα→ 1, the above equation is re-written as:

ptkv = ϕkv ·
N t−1

k

N
The approximation on the denominator holds as N � 1.
When sampling repeats nv times, the expected count of topic
k being sampled at word v is N t

kv = nvp
t
kv. Note that we

omit the expectation symbol for clarify of notation. Thus, the
total expected count of topic k for the test document is:

N t
k =

∑
v∈V

nvp
t
kv

Combining the above two equations,

N t
k =

∑
v∈V

nvϕkv
N t−1

k

N
=
N t−1

k

N

∑
v∈V

nvϕkv

The second equation holds because Nt−1
k

N does not depend on
v. According to Eq.(2) in the main text,

θk =
N t

k + α

N +Kα
→ N t

k

N
when α→ 0, the recursive equation in Eq.(10) holds.

From Lemma 1, we can derive the following theorem:
Theorem 2. When α→ 0 and the document-topic distribu-
tion is initialized as a discrete uniform distribution, i.e., for
each k = 1, . . . ,K, there is θ0k = 1/K, then

θtk =
1

K
·
(∑

v∈Vnvϕkv

N

)t
, ∀t ≥ 0 (11)

The theorem can be easily proved by induction from t = 0
using Lemma 1 and is therefore omitted. In practical imple-
mentation, different t values (i.e., different levels of approxi-
mation) are tested. With the analytical estimate of document-
topic distribution, we can efficiently compute any form of
attack objective value Q(w,w′) in Eqs(3)-(4) for a target-
replacement word pair (w,w′).

6Be reminded that the hyper-parameter α of the Dirichlet distri-
bution can be interpreted as a regularization term of the document-
topic distribution θm based on prior knowledge. In practice, α is a
very small value that is approximately equal to 1/K where K is the
number of topics. Therefore the assumption is reasonably made.



Algorithm 1: EvaLDA

Input: Victim document wvic, topic word distribution
ϕ, attack type in Eqs.(3)(4), approximation
level t in Eq.(11), word distance threshold σ,
modification budget κ.

Output: Adversarial document wadv

1 Get feasible target word setWf and vocabulary Vf

2 Get candidate replacementR(v), ∀v ∈ Vf

3 for w ∈ Wf do
4 Q∗(w)← 0
5 for w′ ∈ R(w) do
6 Compute Q(w,w′) according to Eq.(11) and

attack type
7 if Q(w,w′) > Q∗(w) then
8 Q∗(w)← Q(w,w′)
9 u(w)← w′

10 Wf
sort ← SortWf by Q∗(w)

11 W∗ ← first word ofWf
sort

12 while |W∗| < |wvic| · κ do
13 W ←W∗

14 w ← next word ofWf
sort

15 W∗ ←W∗ ∪ {w}
16 wadv ← replace words w ∈ W with u(w) in wvic

17 return wadv

Attack Strategy Design
Even with an efficient estimate of the attack objective given
an attack strategy, the optimization problem in Eqs.(5)-(7)
is essentially combinatorial, which is proven to be NP-hard.
To scale up the attack, we design a greedy algorithm which
assumes the marginal contribution Q(w,w′) to the attack
objective of different target-replacement word pairs (w,w′)
is independent from each other:

Q(W,W ′) =
∑
w∈W

Q(w,w′) (12)

With this assumption, the problem is then to find the top
ranked set of target-replacement word pairs which have the
highest marginal contribution to the attack objective, subject
to the two constraints in Eqs.(6)-(7). Algorithm 1 shows the
detailed description of EvaLDA.
Step 1: Get feasible set of target words. It starts by getting
the feasible set of target wordsWf for the victim document
wvic (Line 1). This is done by removing unimportant words
such as stop-words. With this step, the attack strategy space is
sufficiently reduced with little sacrifice on the effectiveness of
the attack. Simultaneously, we can get a feasible vocabulary
Vf that corresponds toWf .
Step 2: Get candidate replacement set (Line 2). In addi-
tion to finding the top-ranked target-replacement word pairs
so as to maximally deteriorate the model’s performance, an-
other critical aspect of a successful evasion attack is to make
the perturbations evasive. Therefore, it is important to find
a candidate set of replacementsR(v) for each unique word
v ∈ Vf that are “close” to v. In implementation, we consider

two ways of building the candidate replacement set, which
corresponds to two different notions of “closeness” of words.
The first way is to find the set of synonyms Sv for each word
v ∈ Vf (e.g., using WordNet7). Another way is to measure
word “closeness” in the word embedding space, e.g. (Bo-
janowski et al. 2017). More specifically, we use the cosine
distance 1− cos(v, v′) as the distance measure of a word pair
(v, v′) in the embedding space and add words whose cosine
distance w.r.t. the target word is smaller than a threshold σ.
This is done similarly as in previous works, e.g. (Devlin et al.
2019; Abdibayev et al. 2021).
Step 3: Sort target words w ∈ Wf by their marginal
contributions to the objective ( Lines 3-10). This step con-
tains two loops. The outer loop iterates over each target
word w in Wf , while for each w, the inner loop iterates
over all the possible replacement word w′ in R(w). Here
R(w) is obtained by mapping w to the unique word v in
the vocabulary. The inner loop finds the best replacement
word that has the largest marginal contribution Q(w,w′))
to the objective. For each target word w ∈ Wf , its best
replacement word and the corresponding largest marginal
contribution are respectively denoted as u(w) and Q∗(w),
whereQ∗(w) = maxw′∈R(w)Q(w,w′). After the two loops,
Wf is sorted w.r.t. Q∗(w) to obtain the top-ranked target-
replacement word pairs. The sorted list of words is repre-
sented asWf

sort.
Step 4: Generate adversarial sample (Lines 11-16). This
step generates the attack strategy and the adversarial docu-
ment. It initializesW∗ with the first word in the sorted list
Wf

sort. In the while loop (Lines 12-15), it checks whether
the current set of target words W∗ exceed the budget con-
straint in Eq.(7). It then repeatedly adds word fromWf

sort to
W∗ until the condition is violated. Note that becauseW is a
backup ofW∗ latent by one step, it is the optimal target word
set after the while loop. The algorithm finally replaces each
word w inW with u(w) to obtain the adversarial document.

Experimental Evaluations
We conduct empirical experiments to evaluate EvaLDA.
Datasets We evaluate EvaLDA on 2 different datasets, NIPS8

and AP9. Statistics of the datasets are shown in Table 1.
Models & hyperparameters We implement LDA-CGS us-
ing the lda package10. The hyperparameters of the two
datasets are set as follows: the topic number is 120 for NIPS
dataset, and 75 for AP dataset. The training iteration is 5, 000
which is enough to converge. We set the hyperparameters α
and η of the Dirichlet distribution as default values 0.1 and
0.01. Each test sample runs 500 iterations. All experiments
are run in machines with Intel E5-2678 v3 and 100GB RAM.
Parameters about the EvaLDA algorithm are described after
the Evaluation Metrics paragraph.
Baselines Because this is the first work that studies evasion at-
tack to LDA models, there are no prior works that are directly

7http://wordnet.princeton.edu/
8https://www.kaggle.com/benhamner/nips-papers
9https://github.com/Blei-Lab/lda-c/blob/master/example/ap.

tgz
10https://github.com/lda-project/lda



Dataset #Train docs #Test docs #Train words Vocab size Avg test doc length
NIPS 6,562 679 9,731,300 27,176 3,211
AP 1,571 675 304,357 10,473 192

Table 1: Statistics of datasets.

applicable to our task. In order to evaluate the performance
of EvaLDA, we compare it with 4 reasonable heuristic base-
lines. B1 selects target-replacement word pairs completely
randomly. B2 randomly selects the target words and selects
replacements as the nearest neighbor in the word vector space.
B3 selects the top-k words related to the target topic while
selecting replacements randomly. B4 selects the top-k words
related to the target topic and selects replacements as the
nearest neighbor in the word vector space.
Evaluation metrics We use the following 4 metrics for evalu-
ation, where the first 2 measure the effectiveness of attack, and
the last 2 measure the evasiveness. i) Change of rank (CoR)
is the change of rank for a topic k: CoR = |Rank′k − Rankk|
where Rankk and Rank′k are respectively the rank of topic
k before and after the attack. ii) Change of probability
score (CoPS) means the change in probability score of tar-
get topic k: CoPS = |θk − θadvk |. iii) Average word dis-
tance (AWD) is the average distance between the target-
replacement word pairs in the word vector space: AWD =
1/|W|

∑
(w,w′)∈(W,W′)(1 − cos(w,w′)). iv) Average sen-

tence semantic distance (ASSD). We first use BERT (Devlin
et al. 2019) to encode sentences into high dimensional vec-
tors. We then calculate the accumulated cosine distance of all
sentences that are perturbed to measure the semantic distance
of the victim and adversarial documents. Denote the original
sentence and its perturbed version respectively as s and sadv ,
this is defined as: ASSD = 1/|S|

∑
s∈S(1 − cos(s, sadv)),

where S = {s | s 3 w∩w ∈ W} denotes the set of sentences
which contain adversarial words. s 3 w means sentence s
contains w. ASSD measures sentence level evasiveness.

Promotion Attack
We first evaluate the performance of promotion attack on the
two datasets using the above 4 metrics, under the following
settings: i) Approximation level t (in Eq.(11)) ranges over
1− 6 (default 4). ii) Word substitution strategies (Step 1 in
the previous section), including synonym, word-embedding
and a mixture of the two (default mixture). iii) Perturbation
threshold κ (in Eq.(7)), ranges over [0.5%, 1%, 2%, 3%] (de-
fault κ = 1%). (iv) Original rank of target topic, ranges over
[5, 10, 15, 20] (default 10). When evaluating one parameter,
we fix the other parameters with default values. We randomly
choose 50 test document samples as victim samples. For
all settings, we set word distance threshold σ = 0.6. For
ASSD, we treat the pre- and proceeding 5 words combined
of the current target word as a sentence.For the AP dataset,
the different experiment settings for promotion attack are
the same as before:i) Approximation level t (default 4); ii)
Word substituion strategies (default mix); iii) Perturbation
threshold κ, which ranges over [1%, 2%, 3%, 4%] (default
κ = 2%). (iv) Original rank of target topic, which ranges
over [4, 6, 8, 10] (default 6). As shown in Table 1, documents

in the AP data are much shorter (192 on average) than the
NIPS dataset (3211 on average), using a perturbation thresh-
old of 1% means for some documents whose length is less
than 200, only one word can be perturbed. This makes it
too challenging for the attack algorithms including EvaLDA.
Therefore we set larger default perturbation thresholds for
the experiments on the AP dataset. Similarly, because the
documents are much shorter in the AP dataset, the number of
topics with non-zero probability scores are also much smaller
than that in the NIPS dataset. Therefore, the original rank of
the target topic is set higher and denser than that in the NIPS
dataset. We still randomly choose 50 samples and set word
distance threshold σ = 0.6.
Approximation level Figure 1 shows the results with differ-
ent t values from 1 to 6 on the NIPS dataset. We can see that
by replacing only 1% of the words, EvaLDA significantly out-
performs the baselines in promoting the rank and probability
score of the target topic. In particular, the best CoR result is
obtained when t = 4, where EvaLDA promotes the original
rank from 10 to around 7 on average. We also notice that the
performance of EvaLDA in all metrics is not sensitive to t
values. This indicates the robustness of EvaLDA. Meanwhile,
the AWD and ASSD values are very small (approximately
0.3 for AWD and 0.02 for ASSD). This indicates that the
average perturbation per word is reasonable and the average
perturbation per sentence is almost negligible. Note that B4
achieves the best performance in AWD and ASSD. This is
expected as B4 always selects replacements as the nearest
neighbor of the target word in the vector space. However, the
effectiveness performance of B4 is far worse than EvaLDA.
Figure 2 shows the results for the AP dataset. For all the
metrics, similar patterns are observed compared with experi-
ments on the NIPS dataset. Note that we set the perturbation
threshold as 2%, original rank 6 and mixed word substitution
strategy in this setting. Based on this set of experiments, we
choose level 4 for the rest of the experiments on both datasets.

CoR CoPS AWD ASSD
EM 2.60±0.45 0.017±0.003 0.334±0.004 0.021±0.001

Syno 0.54±0.31 0.003±0.002 0.227±0.009 0.013±0.001
Mix 2.60±0.43 0.017±0.003 0.332±0.003 0.021±0.001

Table 2: Evaluate word substitution strategies on NIPS dataset

CoR CoPS AWD ASSD
EM 0.89±0.26 0.023±0.007 0.315±0.018 0.014±0.002
Syno 0.43±0.25 0.012±0.008 0.260±0.018 0.010±0.001
Mix 0.93±0.27 0.023±0.008 0.315±0.018 0.014±0.002

Table 3: Evaluate word substitution strategies on AP dataset

Word substitution strategy Table 2 shows the result on the



Figure 1: Promotion attack with varying approximate levels t, on the NIPS dataset, showing 95% confidence interval.

Figure 2: Promotion attack with varying approximate levels, on the AP dataset, showing 95% confidence interval.

NIPS dataset when varying word substitution strategies. Note
that the performances of the baselines are not dependent
on the word substitute strategies, and therefore their perfor-
mances are the same as in Figure 1 and we do not repeat
them here. We can see that word embedding strategy (EM)
achieves much better CoR and CoPS results than word syn-
onyms strategy (Syno), while Syno achieves better AWD and
ASSD results. This is intuitive because the solution space
of Syno is significantly smaller than EM, as words usually
have few synonyms. The mixture of the two (Mix), achieves
slightly better results in all metrics compared with EM. This
indicates that Syno, while performing worst in terms of ef-
fectiveness by its own, can be a good complementary to EM.
Table 3 shows the result on the AP dataset. Similarly, EM has
better performance than Syno. A mix of the two has the best
performance in CoR and CoPS, despite that AWD and ASSD
of mix are almost the same as EM.

Perturbation threshold Figure 3 shows performance com-
parisons of EvaLDA with baselines under varying perturba-
tion threshold values, on the NIPS dataset. We can see that
in general, as the threshold increases, both CoR and CoPS
increase. Similarly, EvaLDA is far superior to the baselines
under all threshold values in terms of CoR and CoPS and
is comparable to the baselines in AWD and ASSD. Be re-
minded that the best performance of AWD and ASSD of B4
is due to the fact that it always selects the nearest neighbor of
the target word in vector space. Interestingly, we see that the
average sentence level evasiveness value (ASSD) of EvaLDA
decreases when threshold value increases. Our conjecture for
this is when threshold increases (i.e., solution space is larger),
the newly found target-replacement word pairs by EvaLDA
are closer. Figure 4 shows the result on the AP dataset. In
terms of effectiveness (CoR and CoPS), EvaLDA is superior
to the baseline methods under almost all threshold values.
Note that B3 also performs well under different perturbation

thresholds. This is because B3 selects a random replacement
word for the target word and it is more likely to shift the
target topic. However, such attacks are impractical as it is
highly detectable due to the large word-level and sentence
variations, which are indicated by the very large AWD and
ASSD values.
Original rank of target topic Intuitively, promotion attacks
on topics that are ranked lower should be more effective than
topics that are ranked higher. Results in both Figures 5 and
6 follow this intuition. In addition, since EvaLDA does not
consider the rank of the original topic in the optimization
process, it works constantly in CoPS regardless of the original
rank. Moreover, we can see that the AWD values of EvaLDA
are comparable with B1-B3 and slightly worse than B4. As
shown in Figure 6, the overall results on the AP dataset are
similar to those of the NIPS dataset. The lower ranked topics
are easier to promote, even if topics with higher rankings can
get more score promotion, its ranks are still relatively stable.
As we can see, EvaLDA performs better in CoR and CoPS,
and also competitive in AWD and ASSD.

Demotion Attack
As shown in Eq.(4), rank demotion attack aims at decreasing
the rank of a target topic. Figure 7 shows the result of rank
demotion attack with varying original rank of the target topic,
on the NIPS dataset. We can see that, intuitively, the CoPS
value decreases when the original rank is lower. However, the
CoR metric does not decrease w.r.t. the original rank. This
seems to be counter-intuitive, but in fact is correct because
although the attack to originally higher ranked topics achieves
higher CoPS values, the original probability scores of these
highly ranked topics are also higher. Therefore it is difficult
to change it from a high score to a very low score, rendering
it difficult to demote. In terms of AWD and ASSD, EvaLDA
performs even better than B4. This is because the solution



Figure 3: Promotion attack with varying perturbation threshold, on the NIPS dataset, showing 95% confidence interval.

Figure 4: Promotion attack with varying perturbation threshold, on the AP dataset, showing 95% confidence interval.

Figure 5: Promotion attack with varying original rank of the target topic, on the NIPS dataset, showing 95% confidence interval.

Figure 6: Promotion attack with varying original rank of the target topic, on the AP dataset, showing 95% confidence interval.

Figure 7: Demotion attack with varying original rank of target topic, on the NIPS dataset, showing 95% confidence interval.



Figure 8: Demotion attack with varying original rank of target topic, on the AP dataset, showing 95% confidence interval.

Topic 57  
Rank before attack：10  Rank after attack：4 
Score before attack：0.0204 Score after attack：0.1327
WordCloud before attack: WordCloud after attack:

 ------------------------------------------------------------------------------

Victim Text: Bloodstains on a pillowcase and exercise bar found in Joel Steinberg's 

apartment came from his former lover, an FBI expert testified at Steinberg's trial on 
charges he beat his illegally adopted 6-year-old daughter to death. ... Grispino's 
testimony conviction came Thursday afternoon after the morning session was 
canceled because judge prosecutor Harold Rothwax suffered two broken wrists 
when he was hit by a car as he rode his bicycle to work. ... Lisa's death last year in an 
affluent, well-educated household shocked many New Yorkers and led to a re-
examination of the duty and ability of neighbors, teachers and social workers to 
recognize and report evidence of child abuse.  
------------------------------------------------------------------------------ 

Figure 9: An adversarial sample generated by EvaLDA. Tar-
get and replacement words are resp. in red and blue. By
replacing 2 words “testimony” and “judge” with “conviction”
and “prosecutor”, the rank of the topic is greatly promoted.

space is larger than that of promotion attack, so EvaLDA can
achieve aggressive goals while ensuring similarity. Figure
8 shows the topic demotion attack performance on the AP
dataset. We can see that EvaLDA beats the baselines by a
very large margin for CoR and CoPS, while having the best
AWD and ASSD values too, which are even smaller than B4.

Case Study
We now show via a concrete example how EvaLDA works.
Because documents from the AP dataset are shorter and the
contents are news from Associated Press, we select a victim
document sample from the AP dataset. The length of the doc-
ument is 111 words. We generate an adversarial sample using
EvaLDA with t = 4 and perturbation threshold κ = 0.02 –
which means we can perturb only 2 words. Figure 9 shows a
piece of the sample document, where target and replacement
words are respectively in red and blue. We choose topic 57
as the target topic, which ranks 10th originally. We can see
that by replacing the words ”testimony” and ”judge” with
reasonably close words ”conviction” and ”prosecutor”, the
rank of the topic is promoted to 4 and the topic probability
score increases from 0.0204 to 0.1327. At the top of the text,
the topic WordCloud before and after the attack also shows

that the two new words ”charges” and ”trial” appear with
evidently greater weights.

Conclusion, Limitations, and Future Work
This work is the first to study evasion attacks to LDA mod-
els. The formulated optimization problem, which is prov-
ably NP-hard, is solved via our proposed novel algorithm
EvaLDA. EvalDA consists of an efficient estimate of the
topic-word distribution via a surrogate CGS-based inference
procedure and a greedy target word selection and replacement
procedure. Via extensive experimental evaluations on two
distinct datasets, we show that EvaLDA achieves superb per-
formances in both topic rank promotion and demotion attacks
under various settings. Despite the advantages, EvaLDA does
have a few limitations. First, it is limited to attacks to CGS-
based LDA models. It remains unclear whether it works on
VI-based LDA models. A potential idea is via attack strategy
transferred from a CGS-based LDA model. Second, EvaLDA
assumes a white-box setting and acts more like a proof-of-
concept analysis in the worst-case scenario. It is interesting
to see whether attacks can be effective in a black-box setting.
Another critical future work, which is also the ultimate goal
of studying adversarial attacks to LDA models, is to design
effective defense strategies to against such attacks.
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Ethical Impact
We aim at providing insights into the power and limitations
of adversarial attacks towards LDA models. By exposing this
work, users and service providers of LDA models can be
alerted the potential risks of such models. Moreover, design
defense strategies towards such attacks can be designed to im-
prove the robustness of the models. The potential downside
is that malicious hackers may be aware of the vulnerability
of the LDA models and make exploits of it. However, with-
out being aware of the vulnerabilities would pose critical
risk of their product and systems. Therefore, exposing such
vulnerabilities of LDA models is the necessary first step.
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