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Using Word Embeddings to Deter Intellectual Property Theft

through Automated Generation of Fake Documents
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Theft of intellectual property is a growing problem—one that is exacerbated by the fact that a successful

compromise of an enterprise might only become known months after the hack. A recent solution called

FORGE addresses this problem by automatically generating N “fake” versions of any real document so that

the attacker has to determine which of the N + 1 documents that they have exfiltrated from a compromised

network is real. In this article, we remove two major drawbacks in FORGE: (i) FORGE requires ontologies

in order to generate fake documents—however, in the real world, ontologies, especially good ontologies, are

infrequently available. The WE-FORGE system proposed in this article completely eliminates the need for

ontologies by using distance metrics on word embeddings instead. (ii) FORGE generates fake documents by

first identifying “target” concepts in the original document and then substituting “replacement” concepts for

them. However, we will show that this can lead to sub-optimal results (e.g., as target concepts are selected

without knowing the availability and/or quality of the replacement concepts, they can sometimes lead to

poor results). Our WE-FORGE system addresses this problem in two possible ways by performing a joint

optimization to select concepts and replacements simultaneously. We conduct a human study involving both

computer science and chemistry documents and show that WE-FORGE successfully deceives adversaries.

CCS Concepts: • Security and privacy • Computing methodologies → Artificial intelligence;

Additional Key Words and Phrases: AI security, fake document generation

ACM Reference format:

Almas Abdibayev, Dongkai Chen, Haipeng Chen, Deepti Poluru, and V. S. Subrahmanian. 2021. Using Word

Embeddings to Deter Intellectual Property Theft through Automated Generation of Fake Documents. ACM

Trans. Manage. Inf. Syst. 12, 2, Article 13 (January 2021), 22 pages.

https://doi.org/10.1145/3418289

1 INTRODUCTION

Intellectual property theft is a growing problem for the United States. According to a February 2020
report, the FBI is investigating more than a 1,000 cases of theft of US intellectual property carried
out by just one nation state [7]. A 2019 CNBC report states, likewise, that 1 in 5 US companies feel
that their Intellectual Property (IP) has been stolen by one nation state [14]. Regardless of whether
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these allegations are true or not, it is clear that IP theft is viewed as a major problem by US corpo-
rations. The problem is even more severe because results from cybersecurity firm Symantec state
that there is a gap of 312 days on average from the time an enterprise is compromised by a zero-
day attack and the time the compromise is discovered [1]. This provides almost a full year for an
adversary who has successfully targeted an enterprise to exfiltrate valuable intellectual property.

The goal of this article is to deter IP theft. The essence of deterrence is to increase uncertainty
and impose costs on the adversary—concepts pionereed by Nobel Laureate Tom Schelling [16]
when fighting the Cold War. As powerfully stated by Huth [8], “a threat serves as a deterrent to
the extent that it convinces its target not to carry out the intended action because of the costs and
losses the target would incur.”

The authors of Ref. [5] leveraged these important ideas in order to deter cyber-theft of intellec-
tual property—specifically, technical documents such as scientific papers and patents. They pro-
posed a framework that takes an “original” document d (i.e., the real one) as input and generates a
set F of fake documents that are similar enough to d to be believable, but yet are sufficiently dif-
ferent to be incorrect. Each fake document f ∈ F is obtained by replacing certain concepts c in d
with a replacement concept c ′. A cyber-attacker who steals the resulting set of |F | + 1 documents
would need to spend time and effort (i.e., incur cost) to determine which of the |F | + 1 documents
is the real one. Moreover, even if the attacker decided that a document d� ∈ F ∪ {d } is the real
one, he would still be left in some doubt about whether he is right, i.e., whether d� = d . While the
Fake Online Repository Generation Engine (FORGE) system [5] is shown to generate a believable
document, it suffers from four major flaws.

—Good ontologies are needed. First, FORGE assumes that there is an ontology available for
a given domain and that this ontology is appropriate for the domain in question. Though a
number of ontologies do exist for various knowledge representation purposes, they do not
exist for numerous domains, especially specialized domains. Moreover, they are financially
expensive and time consuming to develop. Reference [17] discusses the costs of building
ontologies. For instance, if a company like Pfizer wants to develop an ontology for a new
autism drug, they would need to develop a new ontology for autism. If, on the other hand,
Toshiba needs to generate an ontology related to portable hard drives, they would need to
create one from scratch. This is manually intensive—taking time and effort. In this article,

we develop a general approach to identifying replacement concepts that do not require the

existence of an ontology. We thus save both time and money.
—The best concept-replacement pairs may not be selected. Second, FORGE first selects

a set of concepts to replace in the original document d . For each selected concept, it then
identifies a set of appropriate replacement concepts, which it uses to generate the fake doc-
uments. However, this is suboptimal. For instance, a concept c in the original document may
be an excellent one to replace in theory, but there may be no really good replacement terms
for it. Because the concepts to replace are fixed without considering the availability and/or
quality of the replacement, this can lead to suboptimal choices. In contrast, we develop a sin-

gle unified method that evaluates concepts and their possible replacements simultaneously,
choosing the (concept, replacement) pairs that work best.

—The replacements chosen for a given concept may be deterministic. Replacing a con-
cept c by the same replacement concept c ′ across multiple documents may make it easier
for an adversary to detect the replacement concepts. One of the two algorithms developed
in this article makes replacements via a stochastic choice, which is non-deterministic—and,
in fact, our results show that this algorithm is better at deceiving the adversary.

—The set F of fake documents generated may be very similar. FORGE does not ensure
that there is diversity in the set of fake documents generated. For instance, if we wish to
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generate 99 fake documents, it is possible that FORGE generates 99 fakes that all differ very
minimally from each other because the set of (concept, replacement) pairs used to generate
each fake document vary minimally.

We, therefore, propose the new Word-Embedding based Fake Online Repository Generation
Engine (WE-FORGE) architecture to address these three major shortcomings of FORGE via the
following important innovations:

—We develop an architecture that merges word embeddings [3, 12] and clustering [10] in
order to identify potential replacements for concepts. In particular, given a concept c in the
original document, we develop embeddings for the concepts (in embeddings, each concept
is represented as a vector) and then cluster the resulting set of word embeddings (and,
hence, the concepts themselves). The idea is that if a concept c ′ is in the same cluster as c ,
then c ′ could serve as a possible replacement for c , with the probability of c ′ being a good
replacement for c being inversely proportional to the distance between c and c ′ according
to a distance metric chosen by the system security manager.

—We pose the problem of selecting the best concept to replace and the best replacement as
two Joint Concept Replacement (JCR) problems (JCR-Implicit and JCR-Explicit), in which
the concept selected for replacement depends upon the quality of the replacements that are
available. We additionally show that both the JCR problems are NP-hard.

—In order to ensure diversity in the set of fake documents generated, we incorporate a regu-
larization term in the objective function of the JCR problems to ensure diversity. The level
of diversity can be easily regulated on an application by application basis.

—We evaluate WE-FORGE via detailed experiments involving human subjects (with Institu-
tional Review Board (IRB) authorization). Our experiments on a chemistry patent dataset
and a computer science patent dataset show that WE-FORGE performs well on real-world
technical documents. In particular, we show that the implicit version of WE-FORGE outper-
forms the explicit version of WE-FORGE. Moreover, both WE-FORGE versions outperform
FORGE. These results show that WE-FORGE is clearly superior to FORGE [5], even if we
do not count the time and cost savings because WE-FORGE does not need ontologies.

Figure 1 shows a paragraph from US Patent US20020042540A1 [11]. The original paragraph is
shown with highlighted words—these are concepts selected for replacement. We show one fake
document (paragraph) generated by the explicit version of JCR and the implicit version—the re-
placement terms are highlighted in red.1

The remainder of this article is organized as follows. Section 2 discusses related work. Sec-
tion 3 introduces the general WE-FORGE architecture, followed by the introduction of the detailed
optimization-based fake document generation approach in Section 4. We present computational
complexity results of the formulated optimization problems in Section 5, and empirical results in
Section 6. Section 8 concludes the article.

2 RELATED WORK

A number of past efforts used “honey” files (e.g. files called passwords.txt) to attract attackers
— once an attacker accesses such a file, the access is logged and securit officers are notified. [24].

1In fact, some substitutions are not perfect. In our WE-FORGE system based on this article, the author of a document d is

expected to use WE-FORGE to generate fakes of a given document. The system shows him/her the concepts c chosen for

replacement and the suggested replacement c′ for a given fake version f of the document. It also shows him a set Cand (c )
of other candidate replacements for c . The user can choose to use c′ or any member of Cand (c ) as the replacement for c .

He/she may also type in a completely different replacement.
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Fig. 1. Sample of Fake Paragraph Generation using WE-FORGE[E] and WE-FORGE[I] on a paragraph from

from US Patent US20020042540A1 [11]. Highlighted portions show some (not all) important modified parts.

A related effort [4] develops the D3 system which uses decoy documents with attractive names to
lure insiders who pose a threat. Another insider threat detection system generates decoy software
by modifying genuine software into bogus programs using obfuscation techniques [13]. The bogus
programs contain a beacon, which indicates when and where the decoy is accessed. Reference [19]
translates genuine documents into a foreign language and sprinkles untranslatable nouns within
it. These efforts are very different from the work reported here in several respects: (i) they do
not develop NLP-based methods to automatically generate fake files at scale; and (ii) they do not
make the tradeoff between believability so that the adversary believes that a fake file is real and
incorrectness—so that there is some difference between the original file and the fake one—that we
do.

Closer to our work is Ref. [22], which proposes the concepts of “Canary Files” and “Canary File
management system” for network intrusion detection. A canary file is a fake document placed
among real documents in order to rapidly detect unauthorized data access, copying, or modifica-
tion. Reference [23] states that fake documents must: (1) be enticing, (2) be realistic, (3) minimize
disruption, (4) be adaptive, (5) provide scalable protective coverage, (6) minimize sensitive arti-
facts and copyright infringement, and (7) contain no characteristics that distinguish them from
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the real document. In particular, it points out that the key is to generate canary files that are
believable. Reference [21] further states that it usually takes several months to produce a realistic
decoy by examining all the topics that can be manipulated to generate fake documents. Refer-
ence [20] proposes using a separate module to generate decoy documents for each topic, which is
time-consuming and difficult to scale. Whereas these works have identified the tradeoff between
scalability and believability of fake document generation, they pay less attention to the tradeoff of
sensitive artefacts minimization and believability.

These past efforts have several limitations. (i) First, they do not specify how to automatically

choose the topics/concepts in the original document that should be replaced in order to generate
fake documents. (ii) They do not address the goal of generating fake technical documents. Rather,
they focus on changes to numeric data such as credit card numbers, social security numbers, ATM
PIN codes, as well as addresses and other structured fields. In a nutshell, they do not do any natural
language processing, which is essential to generate fake technical documents, which is the key goal
of this article. (iii) They do not capture the fact that we must regulate the fake documents to be
“close enough” to the original to make the fakes believable, but sufficiently “far enough” to make
them likely to be wrong. (iv) Finally, none of the above efforts perform a human evaluation to
assess whether humans find the resulting fakes believable or not.

This article builds upon the recent FORGE system [5] that addresses all of the four limitations
(i)–(iv) mentioned above. FORGE builds a multi-layer graph of the concepts in a real document
and computes certain “meta-centrality” measures on the multi-layer graph to select concepts in
the original document to replace. Once a concept is selected for replacement, FORGE requires
an ontology pertinent to the domain of the documents in order to select a suitable replacement
term—for example, if the fake documents are being developed by a company creating pacemak-
ers for the heart, then the ontology may relate to biomedical heart devices. We make three major
improvements over FORGE. First, appropriate ontologies may not always be available—thus, even
if ontologies exist for medicine in general, ones specifically focused on biomedical heart devices
may not. Developing such ontologies from scratch involves multi-disciplinary teams (e.g., cardi-
ologists, biomedical engineers, computer scientists) and can take a lot of time and effort [17]. Our
WE-FORGE system avoids this altogether. Second, FORGE selects concepts to replace in the origi-
nal document without considering what replacements might exist for them. This is a bit like a chef
in a restaurant deciding to replace some dishes on the menu (similar to concepts in the original doc-
ument) without knowing what ingredients he/she has in the kitchen. WE-FORGE decides which
concepts to replace in the original document by considering both what replacements are possi-
ble, and whether applying the replacements will satisfy the competing goals of generating fake
documents that are sufficiently believable and different from the original one. Third, WE-FORGE

ensures that different fake documents all look somewhat different rather than looking very similar
to each other. Finally, we show that WE-FORGE beats out FORGE from a performance perspective.

3 WE-FORGE ARCHITECTURE

Consider a major corporation (e.g., Honeywell Corporation) that produces a huge amount of intel-
lectual property every year in a very wide set of disciplines. According to Wikipedia, Honeywell
develops products in “Aerospace, Building Technologies, Performance Materials & Technologies
(PMT), and Safety & Productivity Solutions (SPS)” 2. The company produces a huge range of prod-
ucts including cockpit instruments, aircraft guidance systems, home and industrial thermostats,
software, air conditions, air purifiers, and much more. Scientists, product designers, and engineers
working for Honeywell might generate all kinds of technical documents covering a wide range

2https://en.wikipedia.org/wiki/Honeywell.
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Fig. 2. A flowchart of our proposed approach.

of territory. Any fake document generation system must support the diversity of products about
which fake documents need to be generated. Figure 2 shows the architecture of the proposed WE-

FORGE architecture. We will now describe how a company such as Honeywell might use our
architecture.

3.1 Pre-Processing

Before any fake documents are generated, some pre-processing steps need to be taken.

(1) Building Domain Specific Corpora: The first step is to build a corpus of domain-specific
documents. In the example company, Honeywell, they would need to generate one cor-
pus of documents about cockpit systems, another corpus about aircraft guidance systems,
another one on home thermostats, and so forth. Building such corpora is quite easy—for
instance, by doing searches on Google Patents or on Google Scholar or from within their
own enterprise file systems. It took a script approximately∼ 10 hours to run and download
10K Computer Science documents from Google Patents. In practice, the original corpora
are already in place of the companies/organizations so that such a step is not actually re-
quired. It is important to note that our approach to fake document generation does not require

any manual annotation (cf. Figure 2.)
(2) Learning Word Embeddings: Next, we automatically learn word embeddings for each

word in the documents. A word embedding associates a numeric vector with each word.
Intuitively, given a word, we can associate a co-occurrence vector with w that captures
some aspect of co-occurrence of the wordw with other wordsw ′ in the vocabulary. These
co-occurrence vectors can then be mapped to a lower dimensional space generating the
final vector (i.e., embedding) associated with word w . We use an extension of the well-
known Word2Vec framework [12] that learns word embeddings of sub-words [3]. Thus, at
the end of this step, each n-gram from the domain-specific corpus of interest is reduced
to a numeric “embedding” vector. We usevc to denote the word vector associated with an
n-gram c . Thus, word embedding associates a unique vector vc with each concept c ∈ C.
Note that learning word embeddings for 10K CS patents (with batch size 1024; 100 epochs
on a 1080 Ti gpu) takes approximately 40 hours of runtime, which is very reasonable.
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Table 1. Silhouette Scores of Different k Values

k 1,000 1,500 2,000 2,500 3,000 3,500 4,000 4,500 5,000
Score 0.0124 0.0113 0.0109 0.0046 0.0051 0.0072 0.0063 0.0063 0.0066

(3) Word Pruning: Once a domain specific document corpus has been constructed above, we
can use part of speech (POS) tagging tools such as Natural Language Toolkit (NLTK) [2]
to automatically eliminate certain types of words from consideration of being replaced.
Such eliminated words can include: stop words (e.g., “the”, “and”), words belonging to
certain parts of speech such as adverbs (e.g., “very”, “really”), adjectives (e.g., “good”, “in-
telligent”), and even verbs (e.g., “buy”, “said”) because such words are very unlikely to
contribute to the technical content of a document. Our WE-FORGE system prunes out all
words other than nouns, but we note that this is not the only choice—instead, one could
use bigrams or trigrams rather than just a single word. In this article, we focus on gen-
erating fake technical documents. As adverbs and adjectives are mostly used to express
sentiment (e.g., “X was very bad”, “X really hated Y”) [18], changing them in technical
documents is unlikely to change the technical content of the document. However, chang-
ing such adverbs and adjectives and verbs in, say, opinion reports (e.g., those produced by
think tanks or business consultancies) could be important. We leave this for future work.

(4) IDF Computation: For each concept c , we can compute the inverse document frequency
of that concept or word from the corpus [6].

(5) Clustering Word Embeddings: The final pre-processing step clusters words together.
The idea is that if a word/concept is in a cluster, then any member of that cluster could
potentially be a replacement of that word. Because each word is now represented as an
embedding vector, we can generate clusters of these vectors in order to cluster the words
together. In this article, we use standard k-means clustering [10] with Euclidean distance
in order to generate clusters. To select the best k value, we use the well-known concept
of silhouette score [15] to evaluate the clustering quality. Table 1 shows the results of
our analysis. We choose k = 1,000 for the word embedding clusters because it has the
largest silhouette score. After clustering, we can obtain a feasible candidate replacement
set F C (c ) for each concept c .

It is important to note that all of these pre-processing steps may be be performed before gen-
erating any fake documents. A company (e.g., Honeywell) might execute these steps for differ-
ent product lines—for instance, they may execute these four steps for generating fake documents
about cockpit instruments, and they may separately execute these four steps for generating fake
documents about thermostats. Another company (e.g., a drug company like Pfizer) might generate
these steps by following exactly the same steps—but, of course, the documents and embeddings
and clusters they derive will be completely different.

Because the pre-processing techniques used are all standard off the shelf techniques, this article
will primarily focus on the techniques used to find the best way to generate fake documents after
pre-processing is complete.

3.2 Operational Use

The top part of Figure 2 shows the architecture of our system during the operational phase (i.e.,
after pre-processing). Once a user has created an “original” technical document d , our framework
performs the following steps.

(1) Extracting Key Concepts: First, we extract all key concepts from d . In the current im-
plementation of WE-FORGE, key concepts are nouns. However, these can be replaced

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 13. Publication date: January 2021.
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with more complex notions of key concepts (e.g., “hot dog” could be a key concept whose
semantics is different from both the words “hot” and “dog”).

(2) TFIDF Computation: Next, we compute the well-known term-frequency, inverse docu-
ment frequency (TFIDF) metric [6, 9] for all key concepts. Note that this measure can be
replaced by other metrics of the importance of concepts. Moreover, we note that the IDF
of all documents was already computed during the pre-processing step, so this step only
involves computing term frequencies and multiplying them with the pre-computed IDFs.
We then cluster concepts according to the TFIDF measure in bins.3 We use ξ (c,d,D) to
denote the TFIDF of concept c in document d w.r.t. corpus D .

(3) Binning: We then place the concepts into Concept importance Bins. We sort the concepts
in document d in ascending order of TFIDFs and then evenly group the concepts into n
bins B1, . . . ,Bn based on their concept importance values such that for all i, j ∈ 1, . . . ,n
where i < j, and c ∈ Bi , c

′ ∈ Bj , we have ξ (c,d,D) ≤ ξ (c ′,d,D). When d,D are clear from

context, we will abuse notation and simply write ξc to denote ξ (c,d,D).
(4) The most novel part of the article is the part that finds the concepts c to replace in docu-

ment d and their corresponding replacements c ′. This is done by solving a joint optimiza-
tion problem described in Section 4.

(5) Finally, once a set {(c1, c
′
1), . . . , (ch , c

′
h

)} of concepts ci and their replacements c ′i are dis-
covered above, the replacements are made.

4 AUTOMATICALLY GENERATING THE FAKE DOCUMENTS

In this section, we show how to use the concepts defined in the preceding sections in order to au-
tomatically generate a set F of fake documents. We propose two methods, each of which involves
solving an optimization problem. In both methods, we start by assuming that we have a directory
with F copies of the original document d . Each f ∈ F will be used to create a fake version of d .

4.1 Explicit Joint Concept Replacement—WE-FORGE[E]

In this section, we develop a natural nonlinear integer optimization problem that determines how
to create a set F of fake documents. We then develop an equivalent linear version.

Given an original document d , we first create |F | copies of d . The integer program below then
provides a method to identify pairs (c, c ′) of concepts such that c is in the original document d
and c ′ ∈ F C (c ) is a feasible replacement concept for c in file f ∈ F . We achieve this by using an
integer variable Xc,c ′f ∈ {0, 1}, which is set to 1 if the replacement for c in file f ∈ F is c ′ and
0 otherwise. The integer optimization problem described in Equation (1) assumes that the only
concepts that are replaced are from a set B of bins selected by the system security officer. Our
later experiments will involve experiments with different bins B.

We first explain the constraints in integer program Equation (1), and then explain the objective
function.

Explanation of Constraints. Constraint (i) indicates that a concept in the selected set B of bins
should be replaced at least μ times to ensure that fake documents are sufficiently different from
d . The selection of a set of bins suggests that the replacement concepts c ′ for c should not be
“too close” to the original c nor should they be “too far” away. Intuitively, this constraint speci-
fies a range of concept importance values. For example, if n = 10, and B = {B8,B9}, the concept

3Formally, term frequency t f (c, d ) is defined as the number of times a concept c occurs in a certain document d , i.e.,

t f (c, d ) = fc,d . Inverse document frequency idf (c, D) captures the rarity of a concept across all documents in the corpus

D. It is defined to be: idf (c, D) = log |D|
|d∈D:c∈d | . TFIDF is then defined to be: ξ (c, d, D) = t f idf (c, d, D) = t f (c, d ) ·

idf (c, D).
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Using Word Embeddings to Deter Intellectual Property Theft 13:9

Fig. 3. WE-FORGE[E] Integer Optimization Problem. Parameters: μ, λ > 0 are constants; Nl is a constant

that describes a lower bound on the number of concepts to be replaced when generating a fake document;

Tf is a constant that describes a lower bound on the sum of the distances of replacement concepts used in

a fake document from the original concepts; B is a set of bins.

importance values (i.e., TFIDF scores) must be within the 70% ∼ 90%th percentile of all concept im-
portance values. Constraint (iv) says that if a concept c is not in the selected bins B, then it cannot
be replaced in any of the files. Constraint (ii) requires that at least Nl concepts must be replaced
in any of the fake documents f ∈ F . Constraint (iii) says that for each fake document f ∈ F , the
sum of distances of selected concepts and their replacements should not be smaller than a thresh-
old Tf (so that the fake document will be significantly different from the original document in
order to make important information in the original document “wrong”). Constraint (v) says the
variables are binary. Constraint (vi) ensures that for any given fake document f and any given
concept c , at most one of the concepts in the feasible candidate set F C (c ) is used to replace c .
Note that λ, μ,Nl ,Tf ,B are parameters that are specified by the system manager. For instance, in
our Honeywell example, the system security officer for Honeywell would specify these explicitly.

The reader may wonder about a couple of things. For instance, constraint (ii) says that at least
Nl concepts in the original document must be replaced but does not, for instance, place an upper
bound on the number of concepts replaced. Similarly, Constraint (iii) requires that in any given
fake file f , the sum of the distances between a concept c and its replacement c ′ must exceed Tf ,
but provides no upper bound. The reason such constraints are not specified explicitly is because
they are effectively enforced in our objective function, which we now discuss below.

Explanation of Objective Function. The objective function contains two terms. The first term (the
triple summation) in the objective function says that we want to replace a concept that has feasible
candidate replacement concepts that are “close” to it. At the same time, we want to minimize the
sum of the TFIDFs of the selected concepts, subject of course to the requirement in constraint (iv)
that they are from the setB of bins (which ensures that they are important enough). This enables us
to make the generated fake documents as indistinguishable from the original document as possible
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as long as they belong to the bins B (which effectively regulates how “far away” a replacement
concept can be). Note that the second term of the objective function looks at every triple of the form
(c, f , f ′), where c is a concept in the original document and f , f ′ are fake files. The summation
in this term tries to maximize the difference between whether the concept c is replaced in both
files f , f ′. We want this summation

∑
c ∈d
∑

f ∈F
∑

f ′ ∈F |
∑

c ′ ∈F C (c ) Xc,c ′,f −
∑

c ′ ∈F C (c ) Xc,c ′,f ′ | to
be as large as possible in order to ensure diversity of concepts that are replaced across all the fake
documents generated. We multiply this summation by (−λ) in order to achieve this.

Linearize objective function. Unfortunately, the objective function in the integer optimization
problem solved by WE-FORGE[E] is nonlinear because of the presence of the absolute value in
the second regularization term of the objective function. As a consequence, this problem may
be hard solve. To avoid this non-linear objective function, we introduce a set of binary auxiliary
variables Yc,f ,f , where for each c ∈ d, f , f ′ ∈ F :

Yc,f ,f ′ ≤ 2 −
∑

c ′ ∈F C (c )

Xc,c ′,f −
∑

c ′ ∈F C (c )

Xc,c ′,f ′

Yc,f ,f ′ ≤
∑

c ′ ∈F C (c )

Xc,c ′,f −
∑

c ′ ∈F C (c )

Xc,c ′,f ′

Yc,f ,f ′ ∈ {0, 1}

(2)

The new objective function in Equation (1) is now:

min
∑

f ∈F

∑

c ∈d

∑

c ′ ∈F C (c )

dist (c, c ′) · ξc · Xc,c ′,f − λ
∑

c ∈d

∑

f ∈F

∑

f ′ ∈F
Yc,f ,f ′ (3)

The following proposition guarantees the equivalence of the original and the linearized objective
functions:

Proposition 1. The objective function in Equation (3) combined with Equation (2) is equivalent

to the objective in Equation (1).

Proof. It suffices to prove that for each c ∈ d, f , f ′ ∈ F , the objective |∑c ′ ∈F C (c ) Xc,c ′,f −∑
c ′ ∈F C (c ) Xc,c ′,f ′ | is equivalent to Yc,f ,f ′ with the constraints in Equation (2). We prove it by con-

sidering the following two cases.
First, when

∑
c ′ ∈F C (c ) Xc,c ′,f =

∑
c ′ ∈F C (c ) Xc,c ′,f ′ . Due to constraint (vi), this means∑

c ′ ∈F C (c ) Xc,c ′,f =
∑

c ′ ∈F C (c ) Xc,c ′,f ′ = 0 or
∑

c ′ ∈F C (c ) Xc,c ′,f =
∑

c ′ ∈F C (c ) Xc,c ′,f ′ = 1. In this
case, we have |∑c ′ ∈F C (c ) Xc,c ′,f −

∑
c ′ ∈F C (c ) Xc,c ′,f ′ | = 0. At the same time, Equation (2) becomes:

Yc,f ,f ′ ≤ 0

Yc,f ,f ′ ∈ {0, 1},
which indicates that Yc,f ,f ′ = 0. Therefore, |∑c ′ ∈F C (c ) Xc,c ′,f −

∑
c ′ ∈F C (c ) Xc,c ′,f ′ | = Yc,f ,f ′ .

Second, when
∑

c ′ ∈F C (c ) Xc,c ′,f �
∑

c ′ ∈F C (c ) Xc,c ′,f ′ , i.e.,
∑

c ′ ∈F C (c ) Xc,c ′,f = 1,∑
c ′ ∈F C (c ) Xc,c ′,f ′ = 0 or

∑
c ′ ∈F C (c ) Xc,c ′,f = 0,

∑
c ′ ∈F C (c ) Xc,c ′,f ′ = 1. In this case, we have

|∑c ′ ∈F C (c ) Xc,c ′,f −
∑

c ′ ∈F C (c ) Xc,c ′,f ′ | = 1. At the same time, Equation (2) becomes:

Yc,f ,f ′ ≤ 1

Yc,f ,f ′ ∈ {0, 1}
Because we are minimizing the negative of Yc,f ,f ′ , we have Yc,f ,f ′ = 1. Therefore,
|∑c ′ ∈F C (c ) Xc,c ′,f −

∑
c ′ ∈F C (c ) Xc,c ′,f ′ | = Yc,f ,f ′ still holds in this case. �

With the linearization, the explicit integration optimization WE-FORGE[E] in Equation (1) is
re-written as follows.
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Fig. 4. Integer Linear Program Solved by WE-FORGE[E].

4.2 Implicit Joint Concept Replacement—WE-FORGE[I]

The integer linear program solved by WE-FORGE[E] can be huge. A single patent document can
have well over a thousand concepts, each of which may have say 20 potential replacements on
average. If we want 100 fake versions of each document, i.e., |F | = 100, then we would have
1,000 × 20 × 100 = 2M Xc,c ′,f variables alone. The total number of constraints is also huge, leading
to an enormous integer linear program, which we prove to be NP-hard in Section 5. In this section,
we develop a variation of the Integer Linear Programming (ILP) solved by WE-FORGE[E]. We call
this variant WE-FORGE[I] (or “Implicit” WE-FORGE), which is much smaller and, hence, easier
to solve in practice. WE-FORGE[I] implicitly determines which candidate c ′ ∈ F C (c ) would be
used to replace the selected concept c in the optimization procedure. We achieve this by incorpo-

rating the effect of concept replacement using the average distance dist (c,F C (c )) as shown in the
implicit integration optimization below.

Note that here, we have an integer variable Xc,f ∈ {0, 1} for every concept-fake file pair (c, f ),
where Xc,f =1 intuitively means that concept c ∈ d will be replaced when generating the fake
document f ∈ F .

Explanation of the Objective Function. As in the case of WE-FORGE[E], the objective function

has two parts. The first part uses dist (c,F C (c )) =
∑

c′∈F C (c ) dist (c,c ′)

|F C (c ) | to denote the average distance

between concept c and the feasible candidates in the set F C (c ). The objective function’s first part
sums up the products of the TFIDF ξc of c and the average distances between concepts c selected
for replacement and the average replacement distance to F C (c ). Unlike the optimization problem
used by WE-FORGE[E] (cf. Equation (1)), we implicitly encode concept replacement in the joint
optimization problem. The second part is the same regularization term used by WE-FORGE[E],
which ensures that different fake files have some diversity in the concepts replaced.
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Fig. 5. Non-Linear Integer Program of WE-FORGE[I].

Explanation of the Constraints. Constraints (i) to (v) have underlying intuitions that correspond
precisely to those in Equation (1)—except that they are modified to use Xc,f variables instead of
xc,c ′,f variables, which leads to a huge decrease in the number of variables. Suppose the total
number of concepts in the concept importance bin B is M , the number of concepts in the feasible
candidate replacement set F C (c ) for each concept c = 1, . . . ,M is nc , and the total number of fake
documents F is F ; then, the total number of variables in the linearized versions of WE-FORGE[E]

and WE-FORGE[I] are respectively

�
�

M∑

c=1

nc
�
�
∗ F +M ∗ F 2 ∼ O (M ∗ N ∗ F +M ∗ F 2)

and

M ∗ F +M ∗ F 2 ∼ O (M ∗ F 2),

where N = max{nc |c ∈ B} is the maximum number of feasible candidate replacement concepts
for a single concept. We can see that due to the term M ∗ N ∗ F , the number of variables in WE-

FORGE[E] would be much larger than that of WE-FORGE[I], especially when N is large. Since the
total number of constraints are linear w.r.t. the number of variables, the same result applies to the
number of constraints.
λ, μ,Nl ,Tf ,B are parameters that should be specified by the system security officer. WE-

FORGE[I] solves the optimization problem shown in Equation (5) to identify which concepts c
to replace. It then selects the replacement for c from the following distribution over F C (c ):

p (c ′) =
edist (c,c ′)

∑
c ′′ ∈F C (c ) edist (c,c ′′)

.

Intuitively, this distribution makes concepts near c less likely to be chosen than those further
away from c . One may think this is counter-intuitive—after all, we want to pick concepts c ′ that
are not too far away from c . However, note that we are choosing concepts c in the optimization
problem solved by WE-FORGE[E] by minimizing the average distance between c and the feasible
candidates in the objective function; so, on average, the feasible candidates in F C (c ) should not
be too far away from c .

Linearize objective function. As in the case of WE-FORGE[E], the optimization problem solved
by WE-FORGE[I] is nonlinear—in order to develop a linear version of it, we introduce a set of

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 13. Publication date: January 2021.



Using Word Embeddings to Deter Intellectual Property Theft 13:13

Fig. 6. Integer Linear Program Solved by WE-FORGE[I].

binary auxiliary variables Yc,f ,f ′ , where for each c ∈ d, f , f ′ ∈ F :

Yc,f ,f ′ ≤ 2 − Xc,f − Xc,f ′

Yc,f ,f ′ ≤ Xc,f + Xc,f ′

Yc,f ,f ′ ∈ {0, 1}
(6)

Now, the new objective function becomes

min
∑

f ∈F

∑

c ∈d
dist (c,F C (c )) · ξc · Xc,f − λ

∑

c ∈d

∑

f ∈F

∑

f ′ ∈F
Yc,f ,f ′ (7)

As in the case of WE-FORGE[E], we have the following equivalence result:

Proposition 2. The objective function in Equation (7) combined with Equation (6) is equivalent

to the objective function in Equation (5).

The proof is similar to the proof of Proposition 1, and we refer to the Appendix for the detailed
proof. With the linearization, the implicit integration optimization WE-FORGE[I] in Equation (5)
is re-written in the following form:

4.3 Overall WE-FORGE Algorithm

The overall WE-FORGE algorithm is presented in Algorithm 1. The algorithm first computes word
embeddings for each concept and then computes the TFIDF of each concept in the original docu-
ment d , and sorts them into bins, and then computes the feasible candidate for each selected bin.
Depending on whether we are computing WE-FORGE[I] or WE-FORGE[E], two different things
are done.

—If the implicit version of WE-FORGE is used, we compute the average distance from c to the
set of feasible replacement concepts for c . Note that this induces a probability distribution
on the set of candidate replacements for c , i.e., the members of the cluster to which c belongs.
This probability assigns to each c ′ ∈ Cluster (c ) a probability:

Prob (c ′) = 1 − d (c, c ′)

Σc ′′ ∈Cluster (c )d (c, c ′′)
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ALGORITHM 1: WE-FORGE

Input: Corpus D, target document d , number of fake documents |F |, parameters μ, λ,Nl ,Tf ,B
Output: Set of fake documents F

1 Train word embeddings for the concepts c ∈ C;

2 Compute ξc ,F C (c ) for each c ∈ d ;

3 if Implicit Integration then

4 for c ∈ d do

5 Calculate dist (c,F C (c ));

6 end

7 Compute Xc,f , ∀c ∈ d, f ∈ F with Equation (8);

8 for f ∈ F do

9 Perform concept replacement according to Xc,f from F C (c ) stochastically;

10 end

11 end

12 else

13 Compute Xc,c ′,f , ∀c ∈ d, c ′ ∈ F C (c ), f ∈ F with Equation (4);

14 for f ∈ F do

15 Perform concept replacement according to Xc,c ′,f deterministically;

16 end

17 end

18 return Set of fake documents F

We then solve the linear version of the WE-FORGE optimization problem to identify the
concepts to replace in any given file. We then replace the selected concepts in each file
with a replacement chosen according to the distribution induced by WE-FORGE[I]. Be-
cause the replacement for a given concept in Line 9 of the algorithm is chosen according
to the distribution induced by WE-FORGE[I], we note that this choice is stochastic and not
deterministic.

—If the explicit version of WE-FORGE is used, then we use the ILP associated with WE-

FORGE[E] to identify the (c, c ′, f ) triples telling us to replace concept c with c ′ in fake file
f and then replace them directly.

5 THEORETICAL RESULTS

We now study the computational complexity of our formulated optimization problems and show
that solving the ILPs used by both WE-FORGE[I] and WE-FORGE[E] are NP-hard.

Theorem 1. The WE-FORGE[I] problem described in Equation (8) is NP-Hard.

Proof. We prove it by constructing the optimization in Equation (8) into an instance of ILP,
which is known to be NP-Hard. The canonical form of an ILP is:

max C
T

x

s.t. Ax ≤ b

x ≥ 0

x ∈ Z
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Here, C is a constant weight vector of the variable x, A is the coefficient matrix, and b is a constant
vector. With this, we can transform the above formulation into the following form:

max
∑

f ∈F

∑

c ∈d
−dist (c,F C (c )) · ξc · Xc,f + λ

∑

c ∈d

∑

f ∈F

∑

f ′ ∈F
Yc,f ,f ′

subject to (i )
∑

f ∈F
−Xc,f ≤ −μ,∀c ∈ B

(ii )
∑

c ∈d
−Xc,f ≤ −Nl , ∀f ∈ F

(iii )
∑

c ∈d
−dist (c,F C (c ))Xc,f ≤ −Tf , ∀f ∈ F

(iv ) Xc,f = 0,∀c � B,∀f ∈ F
(v ) Xc,f ∈ {0, 1},∀c ∈ d, f ∈ F
(vi ) Xc,f + Xc,f ′ + Yc,f ,f ′ ≤ 2, ∀c ∈ d, f , f ′ ∈ F
(vii ) − Xc,f + Xc,f ′ + Yc,f ,f ′ ≤ 0, ∀c ∈ d, f , f ′ ∈ F
(viii ) Yc,f ,f ′ ∈ {0, 1}, ∀c ∈ d, f , f ′ ∈ F

Note that we can always unfold the tensor variables Xc,f and Yc,f ,f ′ into vector variables and
then concatenate into a single vector variable x. With the unfolding, we can see that constraints
(i)–(iii), (vi), and (vii) correspond to Ax ≤ b, while constraints (v) and (viii) correspond to x ≥ 0

and x ∈ Z. Note that constraint (iv) is not actually used in the solving procedure, but only as a
pre-solving procedure to refine the set of concepts that are eligible (in terms of TFIDF importance)
of being selected, and therefore is irrelevant. From the above transformation, we have constructed
the original optimization problem in Equation (8) as instance of ILP. �

The following theorem states that the same NP-hardness result also holds for WE-FORGE[E],
the explicit version of the Joint Concept Replacement Problem.

Theorem 2. The WE-FORGE[E] problem described in Equation (4) is NP-Hard.

For the sake of brevity in the text, the proof of this Theorem is contained in the appendix. Since
we have now successfully captured both variants of WE-FORGE as ILPs, existing ILP solvers could
be utilized to solve our formulated optimization problems.

6 EXPERIMENTAL EVALUATION

6.1 Experimental Setting

We collected 10 Computer Science (CS) and 10 chemistry patents through Google Patents to use
as the original documents that we wish to protect. For each CS document, we used WE-FORGE[I]

and WE-FORGE[E] to generate 6 + 6 = 12 fake versions. In the case of CS documents, we were
unable to compare with the FORGE system [5] because no ontology exists for CS as a whole. For
each chemistry document, we used FORGE to generate six fake versions, and used WE-FORGE[I]

and WE-FORGE[E] approaches to respectively generate three fake versions each. Therefore, we
still have a total of 6+3+3=12 fake versions. We solved both ILPs used in this article with GUROBI4

using the following parameter values.5

4https://www.gurobi.com/.
5Parameter values were selected based on the preliminary evaluation of a separate set of documents. In practice, these

parameters can be specified by users.
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Table 2. Evaluation on CS Documents

����������Method

Choice
Choice 1 Choice 2 Choice 3 Total

Original 0.23 0.14 0.07 0.147
WE-FORGE[I] 0.45 0.52 0.55 0.506
WE-FORGE[E] 0.32 0.34 0.38 0.347

The numbers show the probability of the adversary choosing a document generated

by a specific method as the true document.

Table 3. Evaluation on CS Documents by CS Graduate Students

����������Method

Choice
Choice 1 Choice 2 Choice 3 Total

Original 0.31 0.18 0.03 0.173
WE-FORGE[I] 0.42 0.45 0.56 0.477
WE-FORGE[E] 0.27 0.37 0.41 0.350

The numbers show the probability of the adversary choosing a document generated

by a specific method as the true document.

—The number of fake documents N = |F | is set to 4.
—The factor to tradeoff the two objective terms λ is set to 0.1.
—We split the concept into 20 bins and used concepts in bins from B14 to B19 (so that the

concepts in B1 to B13 are considered too unimportant to make them worth replacing while
the concepts in B20 are the most important concepts in the document and replacing them
increases the likelihood of the adversary detecting fakes).

—We also require that each concept in the selected bins must be replaced at least μ = 2 times
across all generated fake documents.

—The number of concepts replaced in a document is at least Nl = 4.
—The normalized threshold for concept distance Tf is set to 0.2.

6.2 Human Evaluation Using Amazon Mechanical Turk

We designed two sets of human evaluations for the CS and chemistry documents, respectively. In
each assessment, we invited 10 participants from Amazon Mechanical Turk who have a “Master”
level recognition from the M-Turk platform. In each of the 10 CS/Chemistry tasks, the participants
were asked to read the 13 documents (1 original plus 12 fake), and select the document they felt
was the most, the second most, and the third most likely to be the real one.

We provided a financial incentive to participants to make a strong effort to identify the real
documents. In each task, participants received a score of 3, 2, and 1, respectively, if they correctly
identified the genuine document in their first, second, and third top choices. Participants were told
that the three participants with the three highest scores would receive an extra payment.

6.3 Experimental Results

6.3.1 Believability of Generated Documents. This experiment evaluated the believability of the
generated documents and WE-FORGE’s success in deceiving an adversary whose task it is to iden-
tify the fakes. Tables 2 and 4 show the believability results of the CS documents, while Tables 6
and 7 show the believability results of the chemistry documents. In all of Tables 2–7, the first
column describes the type of documents generated by the following five methods:

ACM Transactions on Management Information Systems, Vol. 12, No. 2, Article 13. Publication date: January 2021.



Using Word Embeddings to Deter Intellectual Property Theft 13:17

Table 4. Evaluation on CS Documents

��������Method

Task
1 2 3 4 5 6 7 8 9 10 Total

Original 0.007 0.023 0.010 0.010 0.007 0.013 0.017 0.017 0.023 0.020 0.147
WE-FORGE[I] 0.063 0.037 0.047 0.057 0.057 0.053 0.050 0.043 0.047 0.053 0.506
WE-FORGE[E] 0.030 0.040 0.043 0.033 0.037 0.033 0.033 0.027 0.030 0.027 0.347

The numbers show the probability of the adversary choosing a document generated by a specific method as the true

document.

—Original. This refers to the original (real) document. As described in Section 6.2, only 1 out
of the 13 documents is real.

—WE-FORGE[I]. This means the documents were generated using WE-FORGE[I]. Note that
for CS documents, 6 documents out of the 13 are generated by this method, while for chem-
istry documents, 3 out of 13 are generated by this method.

—WE-FORGE[E]. This means the documents were generated using WE-FORGE[E]. Simi-
larly, 6 out of 13 documents in CS and 3 out of 13 documents in chemistry are generated by
this method.

—WE-FORGE. This is a combination of WE-FORGE[I] and WE-FORGE[E]. Column WE-

FORGE in Tables 6 and 7 is the sum of Columns WE-FORGE[I] and WE-FORGE[E].
—FORGE. The fake document generation method used in Ref. [5], which uses an ontology

to generate fake documents. We had no ontology for CS documents, and so it was not ap-
plied to CS documents. For chemistry documents, 6 out of 13 documents are generated with
FORGE.

The numbers in each column of Tables 2 and 6 refer to the probability that the original docu-
ment was picked vs. documents generated by WE-FORGE[I] and WE-FORGE[E]. For instance, the
Choice 1 column in Table 2 says that 23% of the first choice made by our subjects correctly identi-
fied the original document, 45% identified a fake generated by WE-FORGE[I], and 32% identified
a fake generated by WE-FORGE[E]. The final column aggregates the numbers from the previous
columns. The best results at deception are highlighted in boldface. We see that WE-FORGE[I] has
the best result in both the CS and Chemistry datasets.

The numbers in Tables 4 and 7 refer to the number of times that the documents generated
by different methods are selected by human participants in different tasks. The last column is a
summation of the previous columns. In these two tables, we do not distinguish between different
choices. That is, we add 1 to the count as long as a document generated by a certain method is
selected as any one of the three choices.

Results on CS Documents. We see that (1) both WE-FORGE[I] and WE-FORGE[E] are able to gen-
erate fake documents that are highly believable; (2) WE-FORGE[I] is, in general, better than WE-

FORGE[E] at deception. Our conjecture for the second observation is that the word replacement
generation in WE-FORGE[I] is stochastic, while it is deterministic in WE-FORGE[E] (therefore,
more likely to be reverse engineered to the real document once a replacement is identified).

Table 4 shows the selections for each task, where the top row indicates the task number. In this
table, we do not differentiate between first, second, or third top choice, i.e., once a document is
selected as a genuine document by a participant as any one of the three choices, we add 1 to the
count. We can see that (1) both WE-FORGE[I] and WE-FORGE[E] consistently generate highly
believable fake documents for each task; (2) WE-FORGE[I] is better than WE-FORGE[E] in most
but not all tasks.
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Table 5. Evaluation on CS Documents by CS Graduate Students

��������Method

Task
1 2 3 4 5 6 7 8 9 10 Total

Original 0.010 0.023 0.017 0.010 0.013 0.017 0.023 0.010 0.030 0.020 0.173
WE-FORGE[I] 0.047 0.040 0.036 0.070 0.047 0.046 0.050 0.052 0.040 0.050 0.477
WE-FORGE[E] 0.043 0.037 0.047 0.020 0.040 0.037 0.027 0.038 0.030 0.030 0.350

The numbers show the probability of the adversary choosing a document generated by a specific method as the true

document.

Table 6. Evaluation on Chemistry Documents

����������Method

Choice
Choice 1 Choice 2 Choice 3 Total

Original 0.040 0.030 0.043 0.113
WE-FORGE[I] 0.107 0.107 0.113 0.327
WE-FORGE[E] 0.070 0.107 0.083 0.260
WE-FORGE 0.177 0.213 0.197 0.587
FORGE 0.117 0.090 0.093 0.300

The numbers show the probability of the adversary choosing a document generated

by a specific method as the true document.

Table 7. Evaluation on Chemistry Documents

��������Method

Task
1 2 3 4 5 6 7 8 9 10 Total

Original 0.003 0.020 0.017 0.010 0.010 0.010 0.010 0.010 0.013 0.010 0.113
WE-FORGE[I] 0.030 0.037 0.023 0.030 0.033 0.043 0.020 0.037 0.033 0.040 0.327
WE-FORGE[E] 0.020 0.023 0.020 0.027 0.037 0.023 0.030 0.023 0.033 0.023 0.260
WE-FORGE 0.050 0.060 0.043 0.057 0.070 0.067 0.050 0.060 0.067 0.063 0.587
FORGE 0.047 0.020 0.040 0.033 0.020 0.023 0.040 0.030 0.020 0.027 0.300

The numbers show the probability of the adversary choosing a document generated by a specific method as the true

document.

In order to ensure that the human participants have solid domain knowledge about the doc-
uments, we have also invited 10 Computer Science MS and PhD students to participate in the
experiments. The results are shown in Tables 3 and 5. We can see that similar results can be ob-
served with CS graduate students.

Results on Chemistry Documents. Tables 6 and 7 show similar believability results for the chem-
istry documents. Note that since we have an ontology for chemistry documents from Ref. [5], we
can compare WE-FORGE with the FORGE method here.

The results show that in the case of our chemistry documents, the results obtained are similar to
those with CS documents. However, we have two additional observations: (1) the deceptiveness of
documents generated by WE-FORGE is higher in chemistry documents, (2) WE-FORGE is much
better than FORGE, in general, and is better than FORGE in 9 of the 10 tasks. This suggests that
WE-FORGE[I] both involves less manual labor (i.e., no need to painstakingly create an ontology)
and achieves a higher degree of deception than FORGE.
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Table 8. Runtime (in seconds) Comparison between WE-FORGE[I] and WE-FORGE[E]

Patent Chemistry 1 Chemistry 2 Chemistry 3 Chemistry 4 Chemistry 5 CS 1 CS 2 CS 3 CS 4 CS 5

Default Explicit 0.469 0.147 0.166 0.298 0.166 0.951 1.007 1.615 0.533 1.081

Setting Implicit 0.071 0.059 0.072 0.0816 0.071 0.092 0.079 0.119 0.085 0.848

Nl = 6
Explicit 0.455 0.144 0.162 0.293 0.162 0.683 0.973 1.607 0.451 0.993

Implicit 0.068 0.054 0.061 0.076 0.065 0.089 0.075 0.096 0.078 0.086

μ = 4
Explicit 0.453 0.141 0.158 0.284 0.158 0.667 0.956 1.572 0.518 1.039

Implicit 0.043 0.039 0.040 0.042 0.040 0.045 0.043 0.048 0.044 0.044

Tf = 0.4
Explicit 0.453 0.143 0.160 0.287 0.161 0.673 0.962 1.575 0.519 1.042

Implicit 0.078 0.058 0.061 0.081 0.066 0.091 0.077 0.099 0.088 0.075

B = Explicit 0.494 0.189 0.248 0.499 0.232 1.674 1.279 2.456 1.595 1.134

B10 − B19 Implicit 0.076 0.069 0.077 0.079 0.071 0.102 0.102 0.149 0.102 0.086

The default hyperparameters are set as: N = |F | = 4, B = bins 14–19, Nl = 4, μ = 2, Tf = 0.2, only the modified param-

eters are shown for each row.

Fig. 7. Comparative Runtimes as the number of fake documents is increased from 5 to 50 in Steps of 10.

6.3.2 Runtime. We evaluated the relative runtime of WE-FORGE[I] and WE-FORGE[E] in five
settings. Our default setting is specified in Section 6.1, and only one hyperparameter is changed
as shown in each row.

Runtime under Different Settings. Table 8 shows the runtimes for 10 randomly chosen documents,
five each in Chemistry and CS. We see that WE-FORGE[I] is faster than WE-FORGE[E] in all cases.

Runtime as number of fake documents is increased. We also assessed how WE-FORGE[E] and
WE-FORGE[I]’s runtime changes as the number of fake files to be generated increase from 5–
50 files in steps of 5. We show the results under the default setting (except for that |F | varies
over the set {5, 10, 15, . . . , 45, 50}). The results are shown in Figure 7, which reports the average
time taken across all the 20 documents (10 each in CS and Chemistry). wWe can see that WE-

FORGE[I] is much faster than WE-FORGE[E], increasing almost linearly, while WE-FORGE[E]

has an exponential growth in runtime.

6.3.3 Time Taken by Human Participants. Table 9 shows the average time it took participants
to complete a task. On average, each task takes 11.89, 19.71, and 14.89 minutes, respectively, for CS
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Table 9. Time Taken (in minutes) by Human Subjects to Complete Each Task

Task 1 2 3 4 5 6 7 8 9 10 Avg

CS Docs 16.8 10.4 11.5 11.3 11.1 12.4 11.6 10.9 13.0 10.8 11.98
CS Docs graduate students 27.3 20.2 19.4 15.5 24.7 18.5 22.0 20.0 15.0 14.5 19.71
Chemistry Docs 18.7 17.0 14.6 14.7 15.1 13.9 11.2 15.5 13.6 14.6 14.89

Table 10. Confidence Level of Subjects in CS and Chemistry

on a 1 (Very Low) to 5 (Very High) Scale

Task 1 2 3 4 5 6 7 8 9 10 Avg

Computer Science Docs 3.1 3.4 3.0 3.1 3.0 3.4 3.2 2.9 2.9 2.9 3.09
Chemistry Docs 3.0 3.2 3.2 2.9 2.6 2.7 2.6 2.5 2.4 2.5 2.76

Table 11. Average Jaccard Similarity Values of Generated Fake Documents with and

without Diversity Regularization Terms, with Standard Deviations

Method WE-FORGE[E] WE-FORGE[I]

Diversity term without with without with
Jaccard similarity 0.821 ± 0.011 0.179 ± 0.080 0.864 ± 0.021 0.5637 ± 0.147

(by Mturk), CS (by CS graduate students), and chemistry documents, with standard deviations of
1.76, 3.40, and 1.89 minutes. In general, this suggests that the subjects took one minute on average
per document that they considered.

6.3.4 Confidence Level. Table 10 shows the average confidence level from the 10 participants
for each task. The confidence level ranges from 1 to 5, where 1 indicates a complete guess, and
5 means they were 100% confident. On average, the confidence levels for the CS and chemistry
documents are 3.09 and 2.76, with variances of 0.18 and 0.28. This suggests that participants only
had moderate levels of confidence in the accuracy of their guesses.

6.3.5 Diversity of Generated Fake Documents. To evaluate the diversity of the generated fake
documents, we conduct an ablation study by comparing the similarity of generated documents
with and without the diversity regularization term (i.e., the second term in the objective functions
in Equations (1) and (5)). More specifically, we do a pairwise comparison of the fake documents in
F . Suppose Jaccard( f ′, f ′′) denotes the Jaccard similarity of two fake documents ( f ′, f ′′) in F .
We define the average Jaccard similarity of all the pairs of fake documents in F as

Jaccard(F ) =
2

|F | |F − 1|
∑

f ′ ∈F

∑

f ′′ ∈F &f ′′�f ′

Jaccard( f ′, f ′′).

Note that the total number of such pairs is |F | |F −1 |
2 .

The results are shown in Table 11. We can see that for both WE-FORGE[I] and WE-FORGE[E],
the Jaccard similarity of the generated fake documents with the diversity regularization term is
much smaller than without it. This indicates that the diversity of the generated documents is in-
deed increased with the diversity regularization—the regularization term in the objective function
ensures that the Jaccard similarity of the generated fake documents is smaller.
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7 TWO OTHER ISSUES

In this section, we discuss two other issues.
The Role of the Author. In the WE-FORGE system, an appropriate user (e.g., the author of a

document that needs to be protected from IP theft) is charged with using WE-FORGE to generate
the fakes. When this user runs WE-FORGE on a document d , it generates candidate concepts c for
replacement along with a selected replacement c ′ for each candidate concept c . In addition, it lists
the entire contents Cand (c ) of the cluster to which c belongs. The user can choose to go with the
suggested replacement c ′ or select another replacement c ′′ from Cand (c ). He may also make up
his own custom replacement concept c�.

Separating Fakes from the Real Documents. The reader may legitimately wonder: if an
enterprise’s network has |F | fake documents associated with each real document (presumably
the important ones), how will a legitimate user be able to tell which document is real and which
one is fake? The FORGE system [5] proposed a solution to this problem by embedding a message
authenticating code within each document (real or fake). The user’s private key will enable him
to identify which of |F | + 1 versions of a document is the real one. We do not go into details
here as this problem has already been solved in Ref. [5], and WE-FORGE merely uses the same
method.

8 CONCLUSION

The problem of deterring IP theft is critical to the economies of countries developing advanced
technology. Large investments are made by innovative companies—yet, a relatively cheap cyber
attack can enable an attacker to steal hundreds of millions of dollars of new technology. Moreover,
according to Symantec researchers, victims discover that their enterprise has been compromised by
a zero-day attack only after 312 days on average [1], giving attackers a huge window of time during
which they can steal valuable IP. The goal of this article is to deter such attackers by imposing costs
and increasing uncertainty for them. The recent FORGE system [5] was an important first effort
in this direction.

The WE-FORGE system presented here has four major advantages over FORGE: (i) because it
does not need an ontology, it is far more widely applicable than FORGE specially for domains
where good ontologies are not available; (ii) it selects concept-replacement pairs rather than con-
cepts first and then replacements, thus avoiding making a sub-optimal choice; (iii) it ensures that
the set of generated fake documents are diverse in the sense that there is a decent range of dif-
ference among them unlike FORGE, which could not guarantee this. (iv) The WE-FORGE[I] al-
gorithm ensures that replacements are chosen stochastically, thus reducing the chances that an
adversary can easily reverse engineer the replacements. In particular, our experiments show that
WE-FORGE achieves a higher rate of deception compared to FORGE without requiring that an on-

tology exist or be developed. Moreover, we show on a realistic set of 20 patents that WE-FORGE[I]

runs in a reasonable amount of time—between 0 and 12 second even if 50 fake documents are to
be generated. This suggests that WE-FORGE provides superior performance when compared to
FORGE. Furthermore, WE-FORGE[I] beats WE-FORGE[E] in deceiving adversaries—this is likely
because WE-FORGE[I] makes stochastic choices in replacements while WE-FORGE[E] is more
deterministic (and, hence, perhaps easier for an adversary to guess).

Of course, there are many important directions for future research. FORGE and WE-FORGE only
modify the textual part of a document. But a document can contain diverse types of interlinked
entities such as figures, flowcharts, and tables. We need to be able to ensure that changes in the
text and consistently reflected across these kinds of entities. This would be a major next step which
we plan to study.
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