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Abstract

In this work we consider the problem of how to best
allocate a limited supply of vaccines in the after-
math of an infectious disease outbreak by viewing
the problem as a sequential game between a learner
and an environment (specifically, a bandit prob-
lem). The difficulty of this problem lies in the fact
that the payoff of vaccination cannot be directly
observed, making it difficult to compare the rela-
tive effectiveness of vaccination on different pop-
ulation groups. Currently used vaccination poli-
cies make recommendations based on mathemat-
ical modelling and ethical considerations. These
policies are static, and do not adapt as conditions
change. Our aim is to design and evaluate an algo-
rithm which can make use of routine surveillance
data to dynamically adjust its recommendation. We
evaluate the performance of our approach by apply-
ing it to a simulated epidemic of a disease based
on real-world COVID-19 data, and show that our
vaccination policy was able to perform better than
existing vaccine allocation policies. In particular,
we show that with our allocation method, we can
reduce the number of required vaccination by at
least 50% in order to keep the peak number of hos-
pitalised patients below a certain threshold. Also,
when the same batch sizes are used, our method can
reduce the peak number of hospitalisation by up to
20%. We also demonstrate that our vaccine alloca-
tion does not vary the number of batches per group
much, making it socially more acceptable (as it re-
duces uncertainty, hence results in better and more
interpretable communication).

1 Introduction
Vaccination is a crucial tool in the fight against infectious dis-
ease. The advent of vaccination has all but eliminated dis-
eases which have devastated human populations in the past,
such as smallpox. The eradication of smallpox alone has been
estimated to have prevented 40 million deaths [Ehreth, 2003].
More recently, the effectiveness of the COVID-19 vaccines
[Pritchard et al., 2021] demonstrates that vaccination remains
one of our most important weapons against infectious disease.

There are good reasons to believe that pandemics like
COVID-19 will become more common due to factors such
as global travel, urbanisation, increased human-animal con-
tact, and climate change [Houghton, 2019; Bloomfield, 2020;
McMichael et al., 1996]. Since vaccines are specific to a sin-
gle pathogen, any serious novel outbreak will likely require
the development of a new vaccine. Due to the time it takes
to develop and produce new vaccines, it is likely that pub-
lic health agencies will have to contend with shortages like
the one we saw during the COVID-19 pandemic [Carpetta et
al., 2021]. This leads to an important question: How can we
maximise impact of a limited supply of vaccines?

Determining who should be vaccinated first is not trivial.
There are a variety of possibly conflicting goals, chiefly re-
volving around limiting dissemination, mortality, and mor-
bidity. For example, there is a trade-off between prioritis-
ing those who suffer the most from a disease (usually the
elderly) and those who transmit the most (usually children
and young adults) [Matrajt et al., 2020]. Even if our goal
was to minimise the number of hospitalisations, targeting
the group that transmits the most could still be more effec-
tive than targeting the group that is most likely to be hos-
pitalised due to the fact that there would be fewer people
infected in total. Mathematical models usually show that
the optimal strategy for this goal is a mixed strategy (i.e.
split the coverage) over the two groups [Foy et al., 2021;
Shim, 2021], though such strategies are not typically em-
ployed in real life.

During the COVID-19 pandemic, major public health
agencies devised a prioritisation list which defined the or-
der in which different population groups should be vaccinated
[Noh et al., 2021]. For instance, the WHO recommended that
healthcare workers and older adults should be in the highest
priority group [Noh et al., 2021]. Although these recommen-
dations are useful and much better than a random allocation,
it is far from clear that this approach will lead to the optimal
allocation for any goal. Most previous works on vaccine al-
location have focused on developing strategies preemptively
before the start of the epidemic. While very useful to provide
insights into which baseline policies can best control an in-
fection, they may not be ideal to make real-time decisions as
the infection is progressing. Instead of a static, non-adaptive
prioritisation list, we argue that an adaptive allocation algo-
rithm that dynamically changes its recommendation using up-
to-date data is needed.
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As such, we view the vaccine allocation problem through
the lens of a sequential decision making problem. A sequen-
tial decision making problem is a game with discrete rounds.
In each round, an agent has a number of possible actions to
choose from. Once an action has been chosen, the agent ob-
serves the consequences of their choice. The agent is able to
use the history of actions and consequences to inform their
future choices. Previous work in that aims to tackle simi-
lar decision making problems typically rely on MDP [Sutton
and Barto, 2018], or PoMDP [Kaelbling et al., 1998] mod-
els. However, the vaccine allocation problem is significantly
more complicated than a the standard MDP/PoMDP models
in at least two ways. First, the effects of vaccination cannot
be observed in a straightforward manner: It can only be in-
ferred based on changes in the number of positive tests, hos-
pitalisations, or deaths over a period of time, after a delay.
When observations can be made, they are likely the result of
the combined effects of multiple days of vaccine distribution,
and hence it’s hard to attribute the effects to individual days.
Second, the number of possible ways to allocate some supply
of vaccines to a population is enormous. These challenges
of combinatorial and delayed feedback makes any MDP (or
PoMDP) based models in-trackable.

Against this background, in this paper we will provide a
novel solution based on the bandit framework [Lattimore and
Szepesvári, 2020], a simplified but more flexible version of
MDPs. In addition, its solutions are typically sufficiently
simple to be easily interpretable to the society (which we be-
lieve is a crucial criterion). In particular, we deal with the
first challenge by expanding upon a similar work by Cesa-
Bianchi, Gentile and Mansour [Cesa-Bianchi et al., 2018],
which extends the standard bandit algorithm to deal with ex-
actly this type of feedback. For the second problem, we re-
strict our choices by dividing the available supply of vaccines
into some number of equal sized batches, and we also divide
the population into some number of non-overlapping groups
(for example, by age, or by location). We will show that we
can further impose structure on the set of possible actions
by recasting the vaccine allocation problem as a path find-
ing problem, which allows us to use results given by [Vu et
al., 2020] to efficiently search the strategy space.

In order to evaluate the algorithm, we used a version of
a standard epidemiological model: the age-structured de-
terministic SEIR (susceptible-exposed-infectious-recovered)
compartmental model. The parameters of our model are
based upon on the parameters of a SEIR model for COVID-
19, using real data collected in the UK. Our model accounts
for the varying severity that COVID-19 seems to have on dif-
ferent age-groups [Davies et al., 2020], and we represent so-
cial interactions through age group to age group contact ma-
trices built by survey data.

1.1 Our Contribution
In contrast to deriving prioritisation from mathematical mod-
els (more details about the existing methods can be found
in Section 1.2), our approach requires very few assumptions
about the nature of the disease. The measurements that we
need (such as number of hospitalisations) are simple to col-
lect and unlikely to be incorrect. Bandit algorithms are also
innately able to adapt to changing conditions (such as the
emergence of a new variant) and are more practical for real-

time decision making as the infection progresses. Mathemat-
ical models can usually agree on which groups are the most
important, but they cannot agree on an optimal strategy due
to differences in construction. This leads to strict prioriti-
sation lists which our algorithm avoids. In more detail, we
show that using our bandit algorithm for vaccine allocation
reduced the peak number of hospitalisations by 20% com-
pared to a ‘static’ vaccination policy where the eldest were
always prioritised. We also show that with our allocation
method, we can reduce the number of required vaccination
by at least 50% in order to keep the peak number of hospi-
talised patients below a certain threshold. We also demon-
strate that our vaccine allocation does not vary the number of
batches per group much, making it socially more acceptable
(as it reduces uncertainty, hence results in better and more
interpretable communication).

1.2 Existing Approaches to Vaccine Allocation
The Framework for Equitable Allocation of COVID-19 Vac-
cine [National Academies of Sciences et al., 2020] invokes
the principle of maximum benefit as one of their foundational
principles in establishing their plan for vaccine allocation.
For them, maximum benefit means minimising severe mor-
bidity and mortality caused by COVID-19. It is important to
note that this is not the only principle, for allocating a limited
supply of life-saving vaccines is also a difficult moral prob-
lem. Concerns about fairness, health inequities and other eth-
ical problems are a major component in any allocation frame-
work. However, ethical concerns are largely outside the scope
of this work. We will concentrate on the more measurable
goals like minimising incidence, morbidity and mortality.

2 Algorithm Design
In this section we describe our vaccine allocation algorithm in
more detail, which builds on top of path planning with side-
observation and bandit with delayed feedback models. Given
this, we first briefly discuss the latter two in Sections 2.1
and 2.2, respectively. We then turn to investigate a simpli-
fied version of our problem, where the feedback is not de-
layed (Section 2.3). Finally, we discuss how to incorporate
feedback delay into this framework (Section 2.4).

2.1 Path Planning Problems with
Side-Observations

We consider the following problem, of path planning with
side-observations feedback (SOPPP), introduced by Vu et al.
[Vu et al., 2020], Consider an acyclic graph G = (V, E)
where V is the set of vertices and E is the set of edges of the
graph. Two special vertices, the source and destination, are
denoted s and d respectively. Let P denote the set of paths
from starting from s and ending at d. Each path p ∈ P cor-
responds to a vector in {0, 1}|E|, where p(e) = 1 if and only
if e ∈ E is in p. Let E = |E| and V = |V| for convenience.

Given a time horizon T ∈ N, at each (discrete) stage
t ∈ {1, 2, . . . , T}, a learner chooses a path p ∈ P . Then,
a loss vector ` ∈ [0, 1]E is secretly and adversarially cho-
sen, i.e. it can be an arbitrary function of the learner’s his-
tory. Each element `t(e) corresponds to the scalar loss em-
bedded on the edge e ∈ E . The learner’s incurred loss is
Lt(p̃t) = (p̃t)

>`t =
∑

e∈p̃t
`t(e), i.e., the sum of the
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Algorithm 1 EXP3-OE Algorithm for SOPPP.

1: Input: T , η, β > 0, graph G.
2: Initialize w1(e) := 1, ∀e ∈ E .
3: for t = 1 to T do
4: Loss vector `t is chosen adversarially (unobserved).
5: Use WP Algorithm (see Algorithm 4 in the appendix)

to sample a path p̃t according to xt(p̃t) (defined in
(1)).

6: Suffer the loss Lt(p̃t) =
∑

e∈p̃t
`t(e).

7: Observation graph GO
t is generated and `t(e),

∀e ∈ Ot(p̃t) are observed.
8: ˆ̀

t(e) :=`t(e)I{e∈Ot(p̃t)}
/
(qt(e) + β), ∀e∈E , where

qt(e) :=
∑

p∈Ot(e)
xt(p) is computed by Algorithm 3

(see Appendix B.2).
9: Update weights wt+1(e) := wt(e) · exp(−ηˆ̀t(e)).

10: end for

losses from the edges belonging to p̃t. The learner’s feed-
back at stage t after choosing p̃t is as follows. First, they
observe the edges’ losses `t(e) for any e belonging to the
chosen path p̃t. Additionally, each edge e ∈ p̃t may re-
veal the losses on several other edges. To represent these
side-observations at time t, we consider a graph, denoted
GO

t , containing E vertices. Each vertex ve of GO
t corre-

sponds to an edge e ∈ E of the graph G. There exists
a directed edge from a vertex ve to a vertex ve′ in GO

t if,
by observing the edge loss `t(e), the learner can also de-
duce the edge loss `t(e

′); we also denote this by e→ e′

and say that the edge e reveals the edge e′. The objective
of the learner is to minimize the cumulative expected regret,
defined as RT := E

[∑
t∈[T ] L (p̃t)

]
− min

p∗∈P

∑
t∈[T ] L (p∗).

We also define

Ot(e) :={p ∈ P :∃e′∈p, e′→ e} , ∀e ∈E ,
Ot(p) :={e ∈E :∃e′ ∈p, e′→ e} , ∀p ∈P .

The two main innovations from Vu et al. [Vu et al., 2020]
relevant to the vaccine allocation problem is EXP3-OE, the
algorithm for SOPPP, and the graphical representation of the
action set, which will be formally stated later. Here we will
present the main algorithm from EXP3-OE: Algorithm 1. The
first parameter is T , the time horizon of the game. Informally,
the parameter η controls how aggressively the algorithm will
exploit the best known choice. A smaller value of η leads
to greater exploration. Finally, β is the implicit exploration
parameter, which is used to “pretend to explore” when the
observation graph GO

t is not known.
The algorithm works by assigning a weight to each edge

in the graph G. The weight is related to the loss that the
algorithm observes based on the update rule in line 9. Each
path p ∈ P is also assigned a weight by summing up the
weights of each edge e ∈ p. The probability that a particular
path will be chosen is given by xt(p), given in equation (1),
and used in line 5.

xt(p) :=

∏
e∈p

wt(e)∑
p′∈P

∏
e′∈p′

wt(e′)
=

wt(p)∑
p′∈P

wt(p′)
, ∀p ∈ P . (1)

Line 8 estimates edge losses in light of the observation graph.
The value qt(e) referenced on line 8 refers (intuitively) to the
probability that the loss on edge e is revealed from the chosen
path at t. In summary, in each round t the algorithm proceeds
in the following steps:

1. The adversarial environment chooses a loss vector `t for
each edge in G.

2. A path pt ∈ P is sampled with probability xt(p) using
current weights wt.

3. Losses from edges in Ot(pt) are observed. The loss
from path pt is suffered.

4. Losses for all edges are estimated by
ˆ̀
t(e) :=`t(e)I{e∈Ot(p̃t)}

/
(qt(e) + β), ∀e∈E ,

where qt(e) is computed by Algorithm 3 (written in Ap-
pendix B.2).

5. Weights are updated by wt+1(e) := wt(e) ·
exp(−ηˆ̀t(e)).

Three other algorithms are presented in Vu et al. [Vu et al.,
2020], and can be found in Appendix B.2. These algorithms
concern weight pushing, which is a technique used to sample
a path in O(E) time instead of O(|P|). This is extremely
useful as |P| � E, but the details of weight pushing can be
omitted in this work. The proof of the regret bounds (and
hence correctness) for EXP3-OE is also omitted, but can also
be found in Vu et al. [Vu et al., 2020].

2.2 Multi-Armed Bandits with Delay
Multi-armed bandits (MAB) are decision making models in
which at each time step, a player chooses from a set of actions
(arms) and play (pull) it to receive a reward drawn from an
unknown distribution (each arm may have a different reward
distribution). The goal of the player is then to learn which is
the best arm and play it as many time as possible to maximise
the total expected reward (due to space limitations, we defer
the detailed description of the MAB model to Appendix A).

The idea that a MAB will not reveal feedback on the round
that an action is chosen has been explored in some detail [Ver-
nade et al., 2017; Cesa-Bianchi et al., 2016; Gergely Neu
et al., 2010; Joulani et al., 2013; Bistritz et al., 2019;
Cesa-Bianchi et al., 2018] in a variety of settings, includ-
ing both stochastic and nonstochastic bandits. We consider
the case of a nonstochastic bandit with composite anonymous
feedback, which is studied in detail by Cesa-Bianchi et al.
[Cesa-Bianchi et al., 2018], another primary source for this
work. Composite feedback refers to a scenario where the
loss associated with choosing an action is not observed all
at once at a single moment in time. More precisely, the loss
for choosing an action at time t is adversarially spread over
at most d ∈ N consecutive time steps t, t+ 1, . . . , t+ d− 1.
As a result, the player will observe at time t a composite loss,
which is a sum of components of losses associated with the
last d − 1 actions. The feedback is anonymous in the sense
that the observed loss at any time t is the sum of an unknown
subset of losses from past actions.

Cesa-Bianchi et al. [Cesa-Bianchi et al., 2018] provides a
general reduction technique turning a base nonstochastic ban-
dit algorithm into one operating within the composite anony-
mous feedback setting. Specifically, it provides a wrapper
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algorithm (which will be more precisely described later) that
takes a MAB algorithm as input. They also prove that the re-
gret of the transformed algorithm is bounded in terms of the
regret of the original algorithm.

The general idea of the algorithm is that any given action
will be played at least 2d − 2 times by the wrapper algo-
rithm. The losses observed are then aggregated and treated as
a single loss, which is then fed into the base algorithm. This
approach is simple: we compensate for anonymous feedback
by playing the same action a lot of times so as to guarantee
feedback is the result of that action. We compensate for com-
posite feedback by taking the aggregate loss and dividing by
2d. This approach does not make any assumptions about the
base algorithm, and is therefore easy to generalise.

2.3 Vaccine Allocation Without Delay
The general blueprint for our vaccine allocation algorithm in-
volves combining the EXP3-OE algorithm with a modified
version of the wrapper algorithm. We can observe that given
n > m, allocating n batches of vaccines to some group is at
least as good as allocating m batches to that group. This is a
type of side observation that exists in the vaccine allocation
problem. We will first work on the version of the vaccine al-
location problem where feedback is not delayed. In this case,
we show how the vaccine allocation problem can be formu-
lated as a SOPPP. Afterwards, we will incorporate composite
anonymous feedback by extending the wrapper algorithm to
work on EXP3-OE instead of regular MAB algorithms.

We start with the simplified version of the vaccine alloca-
tion problem without any delay. We maintain the framework
from problem formulation, except in each round t, choosing
action at will immediately yield a loss vector `t = ft.

Graphical Representation
We define a graphical representation of our action set, an idea
inspired by the work of Vu et al. [Vu et al., 2020]. Let graph
Gb,K be a directed acyclic graph that contains:

(i) N := 2 + (b+ 1)(K − 1) vertices arranged into K + 1
layers. Layer 0 and Layer K, each contains only one ver-
tex, respectively labeled s := (0, 0)–the source vertex and
d := (K, b)–the destination vertex. Each Layer i ∈ [K − 1]
contains b+ 1 vertices whose labels are ordered from left to
right by (i, 0), (i, 1), . . . , (i, k).
(ii) There are directed edges from vertex (0, 0) to every vertex
in Layer 1 and edges from every vertex in Layer K − 1 to
vertex (K, b). For i ∈ {1, 2, . . . ,K− 2}, there exists an edge
connecting vertex (i, j1) (of Layer i) to vertex (i+ 1, j2) (of
Layer (i+ 1)) if b ≥ j2 ≥ j1 ≥ 0.

Each path from s to d in Gb,K corresponds to an allocation
of b batches of vaccines for K groups. In particular, con-
sider a path (0, 0), (1, j1), . . . , (k, jk), . . . , (K, b) with 0 ≤
j1 ≤ j2 · · · ≤ b. This represents an allocation with jk − jk−1
batches allocated to group k for each k = {1, 2, . . . ,K}. See
Figure 1a for a visual representation of an example.

Note that each component of the action vector at(i) corre-
sponds to the edge

((i− 1,

i−1∑
k=0

at(k)), (i,

i∑
k=0

at(k))),

(a) (b)

Figure 1: (a) G3,6 - each path from (0, 0) to (3, 6) corresponds to
an vaccine allocation. The red path represents giving zero batches to
group 1, one batch to group 2, and five batches to group 3. The blue
path represents giving all six batches to group 1.
(b) This figure depicts G3,3. The red path represents giving zero
batches to group 1, one batch to group 2, and two batches to group
3. The edges in green are all the direct side-observations described
by (4.1) given the path in red. Note that there cannot be direct side-
observations in the first and last layers. The edges in blue are all
indirect side-observations described by (4.2) given the path in red.
Note that the indirect side-observations in the last layer are ‘below’
the edge being explored, whereas they are ‘above’ the edge being
directly explored in every other layer.

and all K edges in order form a path in G. We can verify
this by first noting that the starting vertex is (0, 0) and the
ending vertex is (K,

∑K
k=0 at(k)) = (K, b). We can verify

by inspection that the ending vertex from the ith edge and the
starting vertex from the i+ 1th edges are the same.

Side Observations
EXP3-OE is able to make use of observation graphs, which
indicate that from a chosen vaccine allocation, how we can
infer about the feedback of another, not chosen (and therefore
not observed) allocation. This graph is useful in reducing the
computational complexity of the allocation algorithm (as it
infers about far more possible allocations by just trying out
much less combinations).

This observation graph can be described as follows: Let G
be a graph representing the action set of the vaccine allocation
problem. Let d be an integer, with 0 ≤ d < b. The first
thing to notice is that there is sometimes more than one edge
representing the allocation of d batches to a group. More
precisely, if e = ((i, j), (i+1, k)) and e′ = ((i, j′), (i+1, k′))
are valid edges in G, then we say

k − j = k′ − j′ =⇒ e′ → e. (2)

That is, by observing the feedback of edge e′, we can also
infer the feedback we would get if we have chosen edge e.
The explanation of this is as follows: Note that k − j = k′ −
j′ = d, which the number of doses allocated to group i + 1
when a path includes e. That is, the allocation that contains
edge e and the allocation that contains edge e′ allocates the
same amount of batches to that group, hence the observation
should be the same. We call this a direct side-observation.

We now turn to the indirect observations: As mentioned
before, vaccinating n people is at least as good vaccinating
m < n people. The loss observed from allocating d ≥ 0
batches to a particular group gives us an upper bound on the
loss of allocating d′ batches to that group, where d < d′ ≤ b.
For valid edges e = ((i, j), (i + 1, k)) and e′ = ((i, j′), (i +
1, k′)), we can formulate this as

k − j > k′ − j′ =⇒ e′ → e. (3)

Proceedings of the Thirty-First International Joint Conference on Artificial Intelligence (IJCAI-22)
Special Track on AI for Good

5202



Note that k − j = d and k′ − j′ = d′. We call these in-
direct side-observations and we distinguish edges observed
this way from direct side-observation. A simple example of
side-observations can be found in Figure 1b.

The reason for this separation is due to the fact that EXP3-
OE requires observed losses to be exact, and there is no
straightforward way to incorporate bounding. Therefore
we will have to approximate the losses from indirect side-
observations in some way, whereas this is unnecessary for
direct side-observation. We propose a very simple function
based on the assumption that the loss that we suffer from
choosing an action is inversely proportional to the proportion
of the population group that is vaccinated.

More formally, let the number of vaccines in each batch be
x. Suppose the edge e′ = ((i, j), (i+1, j+k)) was chosen at
time t, with k ∈ N, j + k < b, with observed loss `t(e′) = `.
From the problem statement, the proportion of people vacci-
nated in that group is Vt(i+1)

Ni+1
. We define p := `( Ni+1

Vt(i+1) ). If
e′ → e, then e = ((i, j), (i + 1, j′ + k′)) for some j′ ≥ j,
k′ ≥ k. For k′ > k (i.e. indirect side-observations), we ap-
proximate the loss ˜̀t(e) given the direct observation `t(e

′) by
˜̀
t(e) =

(Vt(i+1)+(k′−k)x)p
Ni+1

. The combination of (2) and (3)
fully describe the observation graph GO

t for the vaccine allo-
cation problem, and we substitute true losses for those edges
described by (3) with our approximation ˜̀

t when building
the observation graph (see line 7 in Algorithm 1 from the ap-
pendix). Note that the ˜̀

t we use here is not the same as the
ˆ̀
t in Algorithm 1.

Modifying EXP3-OE
With both graphical representation and side observations in
place, the vaccine problem without delay is now a SOPPP.
We only need a few modifications to Algorithm 1. We lift the
restriction that `t ∈ [0, 1]E , instead allowing `t ∈ [0,∞)E .
Choosing an edge is expected to reduce future losses from
that edge, so we need to increase the weight of an edge when
we see a loss on that edge, which requires a sign change of
−η to η in the weight update equation (line 9 of Algorithm
1). The algorithms involved in weight pushing do not need
any alteration. In preparation for the wrapper algorithm, we
will implement Algorithm 1 with two separate functions: one
which performs a weight update given observed losses and
current weights; and one which samples a new path based
given a set of edge weights.

2.4 Incorporating Delayed Feedback
With the undelayed vaccine allocation problem formulated

as a SOPPP, we will incorporate delayed feedback using a
wrapper algorithm. Before defining the wrapper algorithm,
we need to introduce some notation which is heavily based
on work by Cesa-Bianchi et al. [Cesa-Bianchi et al., 2018].
Instead of charging the loss of each action to the player im-
mediately, as we have done thus far, we now break each loss
`t(e) into the sum `t(e) =

∑d−1
s=0 `

(s)
t (e) of d-many compo-

nents `(s)t (e) ≥ 0 for s = 0, . . . , d − 1. If a player chooses a
path pt ∈ P at time t, then for each edge e ∈ pt, the player
incurs loss `0t (e) at time t, loss `1t (e) at time t+ 1, and so on
until time t+d−1. However, the player can only observe the

Algorithm 2 Composite Reward Wrapper for Path Planning
Input: Base PPP Algorithm A (e.g., the EXP3-OE)
Initialization:
Draw p0 from the uniform distribution P1 over P .
If B0 = 1 then t = 0 is an update round.
for t = 1, 2, . . . do

1. If t − 1 was update round, draw pt ∼ Pt and play it
without updating Pt (i.e., Pt+1 = Pt);
2. Else if update round was in the interval {t − 2d +
1, . . . , t − 2}, play pt = pt−1 without updating pt (i.e.,
Pt+1 = Pt);
3. Else play pt = pt−1 (stay round), and if Bt = 1 then
the stay round becomes an update round. In such a case:
3.1 Find average composite loss vector

ˆ̀
t =

1

2d

t∑
s=t−d+1

`Os (Ps−d+1, . . . , Ps)

3.2 Feed Base PPP A with observed rewards from ex-
plored edges.
3.3 Use the update rule pt → pt+1 of Base PPP to obtain
new distribution pt+1 over P.

end

combined loss for all the edges in some layer m at any time
t. Let

Hm = {e = ((i, j), (i+ 1, k)) ∈ E : i+ 1 = m, i ∈ [K − 1]}

be the set of edges connecting a vertex from layer i to layer
i+1. Hm is the set of all edges which corresponds to allocat-
ing vaccines to group m. Then the feedback we obtain from
group m is given by

ft(m) =
∑

e∈Hm

d−1∑
s=0

I(e ∈ pt−s)`
(s)
t−s(e).

Assuming d ≥ 2, and for any sequence of paths
q1,q2, . . . ,qd ∈ P , we define the d-delayed composite loss
function (with vector-valued output) for each m ∈ [K] by

`Ot (q1,q2, . . . ,qd)(m) =
∑

e∈Hm

d−1∑
s=0

I(e ∈ qd−s)`
(s)
t−s(e),

with `
(s)
t (e) = 0 for all e and s when t ≤ 0. With this

notation, the player observes at the end of each round t the
composite reward `Ot (pt−d+1,pt−d+2, . . . ,pt).

Wrapper Algorithm
Algorithm 2 is the main wrapper algorithm we will use for
the vaccine allocation problem, which is a modified version
of the main wrapper algorithm in Cesa-Bianchi et al. [Cesa-
Bianchi et al., 2018]. This algorithm takes as input an al-
gorithm called Base PPP which operates on a path planning
problem. We assume Base PPP has an update rule which pro-
duces probability distributions Pt over the possible paths P
after observing rewards from previous rounds. The Base PPP
operates on a path planning problem without delay, where
a new probability distribution is drawn in every round and
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Figure 2: (a) Peak value of hospitalised patients with different vaccine batch values. Our algorithm used daily batch of 64, 000, while thewe
run the benchmark with varying batches (from 64, 000 to 112, 000.) (b) Number of hospitalised patients over time. (c) Vaccine allocation per
group over time.

losses are suffered in every round. The wrapper has access to
a sequence B0, B1, . . . of identical and independently drawn
Bernoulli random variables, and consists of draw, update and
stay rounds:

1. A draw round (number 1 in the for loop) always follows
an update round. In a draw round, we simply draw a
path from the distribution Pt and play it, where ‘playing’
refers to suffering the loss of the chosen path.

2. In a stay round (number 2 in the for loop), the algorithm
simply plays the same path as the previous round. No
change is made to the distribution we draw from.

3. In an update round (number 3 in the for loop), we play
the same path as the previous round. We calculate a
composite loss which is roughly the average loss suf-
fered in all the rounds since the last update round. We
also use the update rule from Base PPP to generate a new
distribution given the composite loss.

It is important to notice that the same path is always played
between any two update rounds, and there are at least 2d− 1
rounds between any two update rounds. Intuitively, this algo-
rithms works by compressing about 2d rounds in the delayed
setting into a single round in the non-delayed setting (recall
that d is the max delay).

3 Experimental Validation
We set population N = 3, 000, 000 for all of our simula-
tions. The epidemic begins with 10 random infected individ-
uals aged from 20 to 50. Vaccination begins once 10% of the
population has either been exposed, infected, or have recov-
ered from the disease. We compare the performance of our
algorithm with a benchmark algorithm that mimics common
vaccine allocation policies for COVID-19 in many countries
by allocating its daily budget to the eldest age group for which
there are susceptible individuals.

We first investigate the peak value of hospitalised patients
within the investigated regions (Figures 2a and 2b). This is
an important measure as a high number of hospitalised pa-
tients at its peak could exceed the total capacity of the re-
gion’s healthcare system and therefore would cause the sys-

tem’s collapse. From Figure 2a we can see that by using a
daily batch of 64, 000, our algorithm can already reduce the
peak value from 16.5% of the population to 14.5% (approx.
60 thousand patients), while even with a batch as twice as
large (112, 000 daily batch), the benchmark method would
not be able to reduce the peak value down to 15.5%. Note
that if our algorithm also runs with 112, 000 baatch size, the
peak can be further reduced to less than 12.5% from 15.5%
(see Figure 2a), which is a 20% reduction. From Figure 2b
we can also see that our algorithm can contain the disease
spread down to 10% of the population approx. 5 days earlier
than the benchmark (when used the same amount of vaccina-
tions). Both these improvements could save numerous lives
and costs spent on the fight against the spread of the disease.

Finally, we investigate whether the vaccine allocation cal-
culated by our algorithm can be easily communicated to the
wider audience. Our main concern was if the vaccine al-
location per group/region would vary too much, that would
generate some uncertainty in the society, and therefore would
introduce some sort of lack of trust towards the allocation.
Thanks to the nature of the wrapper algorithm (Algorithm 2)
which consistently chooses the same allocation for multiple
rounds, this is not the case (see Figure 2c). That is, allocations
come in (a small number of) large-sized bursts, minimising
the number of transitions between allocated/not allocated.

4 Conclusion

We have designed and implemented a novel online learning
algorithm with the aim of improving vaccine allocation. This
algorithm is useful in that it avoids mathematical modelling
of the underlying disease, which is difficult and often fails
to yield a precise vaccination strategy. Our algorithm is able
to integrate up-to-date data to generate vaccination strategies
which are both actionable and sophisticated. We tested our
algorithm in a simulation of an epidemic loosely based on
COVID-19, which showed that our algorithm is able to make
better use of a limited supply vaccines than existing vaccine
allocation policies.
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