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We propose PCAM, a Probabilistic Cyber-Alert Management framework, that enables chief information se-
curity officers to better manage cyber-alerts. Workers in Cyber Security Operation Centers usually work in
8- or 12-hour shifts. Before a shift, PCAM analyzes data about all past alerts and true alerts during the shift
time-frame to schedule a given set of analysts in accordance with workplace constraints so that the expected
number of “uncovered” true alerts (i.e., true alerts not shown to an analyst) is minimized. PCAM achieves this
by formulating the problem as a bi-level non-linear optimization problem and then shows how to linearize
and solve this complex problem. We have tested PCAM extensively. Using statistics derived from 44 days
of real-world alert data, we are able to minimize the expected number of true alerts that are not manually
examined by a team consisting of junior, senior, and principal analysts. We are also able to identify the op-
timal mix of junior, senior, and principal analysts needed during both day and night shifts given a budget,
outperforming some reasonable baselines. We tested PCAM’s proposed schedule (from statistics on 44 days)
on a further 6 days of data, using an off-the-shelf false alarm classifier to predict which alerts are real and
which ones are false. Moreover, we show experimentally that PCAM is robust to various kinds of errors in
the statistics used.
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1 INTRODUCTION

Most Cyber Security Operations Centers (CSOCs) are flooded by alerts. For instance, while
speaking about the Sony breach in 2015, Reference [13] says that “while the tools were able to
identify the malicious activity, those alerts were lost in a sea of 40,000 other alerts that same month.”
Other sources state that “the security operations center (SOC) is drowning in cybersecurity alerts”1;
they go on to state that banks see over 100,000 alerts per day.

We propose Probabilistic Cyber-Alert Management (PCAM), a framework that uses statis-
tics to manage this flood of alerts, while satisfying workplace requirements within a given work
shift. Figure 1 shows the architecture of PCAM. (i) As seen on the left side of Figure 1, before a
shift starts, PCAM uses historical statistics to compute a schedule of work specifying the analysts’
lunch and other breaks. Because each “true alert” must be examined by an analyst, PCAM tries to
ensure that this schedule minimizes the expected number of “uncovered” true alerts. (ii) Then, as
shown on the right of the figure, during a shift, security products generate alerts. PCAM dynami-
cally uses an off the shelf classifier [6, 10, 14, 20] to predict if an alert is likely to be real (“true” alert)
or not (“false” alert). “True” alerts are dynamically assigned to analysts for manual inspection in
accordance with the probability (of being a true alert) returned by the classifier. False alarms are
discarded.

The organization of the article and the main contributions are as follows. Section 2 describes
explains the differences between past work and ours. Section 3 describes the data used by PCAM

and provides a high-level overview of how PCAM works. Section 4 describes the technical details
behind PCAM. We formalize the problem of maximizing expected true alert coverage and show
how it can be expressed via a non-linear bi-level integer programming. Section 5 addresses two
major problems that make the above integer program challenging: Nonlinear integer programs
are hard to solve and so are bilevel integer programs. We show how to linearize the problem and
then additionally show how to modify the bilevel optimization into a single-level optimization.
This makes the problem amenable to solution by off the shelf integer program solvers. Section 7
describes our experimental validation of PCAM. We used 30 days of real-world data from Dart-
mouth College’s Information Technology and Consulting (ITC) organization that maintains
all of Dartmouth’s networks and servers. We then used the real-world alert data for the next 14
days to see how our system would perform if the schedule for the next shift was created at the
end of the previous shift. In addition, we ran robustness experiments using simulated data whose
statistics varied from those learned from the prior history. In all these cases, PCAM performed
extremely well.

2 RELATED WORK

In this section, we introduce related works that study security personnel scheduling for manual

analysis of security alarms.

The idea that managed security services need to optimize the allocation of analysts was studied
in Reference [11]; the paper developed a combination of game theory and probabilistic temporal

1https://bricata.com/blog/how-many-daily-cybersecurity-alerts/.
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Fig. 1. PCAM architecture.

logic to reason about scheduling analysts in the presence of an adversary who takes advantage
of the fact that lots of security alerts might be false. The problem was addressed by Dunstatter
et al. [4, 5] from a Markov games perspective using deep reinforcement learning. Wang et al. [19]
presented a survey of game-theoretic methods that have been applied to improve cyber security.
They are focused on a game-theoretic setting with an adversary, which is not the focus of this
article.

Ganesan et al. [8, 9] introduced the CSOC workforce optimization problem and used a rein-
forcement learning method to allocate the incoming alerts to security staff. This is extended in
Reference [18] into a setting with distributed CSOCs. Their work does not address what happens
before a shift.

Shah et al. [17] proposed an optimization framework to allocate cyber alert detection sensors to
alert analysts. This was extended in Reference [16], which focused on fairness issues in the sensor-
analyst allocation problem. Okimoto et al. [15] proposed a system to optimize the cyber-security
systems involved with multiple criteria, e.g., risk (security), surveillance (privacy), and cost. Altner
et al. [1] investigated optimizing staffing and shift scheduling decisions given unknown demand
on weekly shifts with an on-call mechanism. In two less-related (as they do not work on analyst
scheduling) but still relevant works, Franklin et al. [7] proposed a visualization tool to help with the
cyber analysts to understand the analytic process and to structure their analytic thinking. Larriva-
Novo et al. [12] proposed a dynamic risk management system with the capability of reacting to
those rapid changes in the context of the organization with various types of sensors.

In contrast to all of these efforts that do not rely on a mechanism to separate real from false
alerts, PCAM combines scheduling with prediction to (i) comes up with an a priori (e.g., just before
a shift starts) schedule that minimizes the expected number of uncovered true alerts (i.e., true alerts
that are missed by analysts) given some resource constraints and some workplace constraints,
(ii) come up with a real-time mechanism to handle alerts that come in, once the shift schedule
has been created, and (iii) considers variant of PCAM involving robustness to various natural
or adversarial scenarios. Moreover, unlike the past work, PCAM has been tested on real-world
data and shows high-quality performance. In addition, our formulation of the analyst scheduling
problem is closer to the realistic setting with more practical constraints (e.g., capacity of analysts,
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constraints on break time, etc.) and therefore introduces a more complex mixed integer nonlinear
bi-level optimization problem that has not been addressed in previous works.

3 PCAM DATA

Figure 1 shows the proposed architecture of the PCAM system. PCAM takes as input the data
coming from alert-generating products used in enterprises. In our experiments, we used alerts
coming from two well-known commercial security products used at Dartmouth College. We used
two pieces of information from these products.

(1) Alert data statistics. We obtained 44 days of real alert data.2 These data contained 8,119,858
alerts, leading to a daily average of 180,441 alerts per day. From this entire set of alerts, ac-
cording to Dartmouth’s security analysts, there were just 21,916 true alerts, i.e., about 0.27%
of the alerts were real, while about 99.73% of the alerts were false alarms. This constitutes an
average of 498 true alerts per day, lost in a sea of 180,441 alerts being generated every day.
We obtained statistics about the distribution of these alerts (both all alerts and true alerts)
within 10-minute windows during the course of any given day. In other words, we broke the
day down into 10-minute windows and obtained statistics (mean and standard deviation of
the number of alerts per window, mean and standard deviation of the number of true alerts
per window) and used these in Section 4 to generate data-driven schedules for analysts for
the next shift so that the shift schedules satisfy various workplace requirements. Figure 2(a)
and (b) show the temporal distribution of the number of true alerts during the weekdays and
weekends. The results show that the distribution of true alerts is very different during week-
days and weekends. During weekdays, the true alerts largely occur during the 12 noon–to–3
pm window, but during weekends, we see three spikes: during the 3 am–to–4 am window,
during the 12 noon–to–3pm window (as was the case during weekdays), as well as during
the 6 pm–to–9 pm window. All times are U.S. East Coast times.

(2) Raw Alerts. In addition, once workers are on a shift, new alerts keep coming in from the
security products used by the enterprise. In this case, we developed a “True Alert Predictor”
to predict which of the alerts coming in in real time were true and which were false. We
were able to do this with high accuracy.

As a consequence, our PCAM architecture allows us to automatically schedule analyst shifts in
a manner that is consistent with the arrival of both alerts and true alerts in 10-minute windows
prior to the start of a shift; during a shift, the PCAM framework can present to the analysts those
alerts that are predicted to be true in descending order of the probability of the truth.

4 PCAM ANALYST SHIFT SCHEDULING AS A NONLINEAR BI-LEVEL OPTIMIZATION

In this section, we describe the problem of scheduling an analyst’s shift for Maximal True Alert

Coverage (MTAC). Past work [1] suggests that most shifts are either 8-hour shifts or 12-hour
shifts. Because our PCAM framework is the same irrespective of the duration of the shift, without
loss of generality, we assume the shift is 12 hours long. Twelve-hour shifts usually run from 7 am
to 7 pm (day shift) and 7 pm to 7 am (night shift).

We assume a shift is divided up into contiguous time slices t1, . . . , tn where each time slice tj

represents a user-selected interval of time that is sufficiently small for their purposes. In our work,
we chose the time slices to be 10 minutes long, and hence a shift of 12 hours corresponds to 72 time
slices, i.e., n = 72. We assume that the company employs m analysts a1, . . . ,am . Each analyst is a
junior analyst, a senior analyst, or a principal analyst, and their capabilities in terms of processing

2An additional 6 days of data was later used for live testing.
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Fig. 2. Temporal distribution of true alerts for weekdays and weekends. The x-axis represents the time and

y-axis represents the number of true alerts per hour. The shadowed areas represent the standard deviation.

alerts are given below; the statistics below are reproduced from the study in Reference [1]. We
assume that analyst ai is capable of analyzing ci alerts per time slice in accordance with the above
statistics. In addition, we use the following notation:

• MT is a constant integer that denotes the maximum number of time slices that an analyst
may work during a shift.
• CT is a constant integer that denotes the maximum number of contiguous time slices that

an analyst may work before taking a break for one time slice.
• L is a constant integer that says that each analyst must have a lunch break consisting of at

least L contiguous time units. (We recognize that the “lunch break” in the night shift is a
break for a meal rather than for lunch, but will abuse notation and call it a lunch break).
• LS,LE where LS ≤ LE are constant integers that bound the period when each analyst gets

their lunch break. For instance, during the day shift, we may set LS to 37 (i.e., 11:00–11:10
am) and LE to 51 (i.e., 2:20–2:30 pm), and this imposes the constraint that every analyst gets
his lunch break during the time interval [LS,LE]. In particular, we require that each analyst’s
lunch break be fully contained within the [LS,LE] interval.
• We useAj andTAj as the expected number of alerts (respectively, true alerts) to arrive during

time interval tj . These numbers can be estimated from historical statistics and computed as
expected values.

The problem of scheduling shifts is now the problem of allocating analysts to shifts so that the
expected number of “uncovered true alerts” is minimized. We first formalize this as a bi-level
mixed integer nonlinear optimization problem as shown in Figure 3.

4.1 Constraints

We now explain the constraints in the mixed integer nonlinear optimization formulation provided
in Figure 3.

Our formulation uses binary-valued variables vi, j . The idea is that vi, j should be set to 1 if
analyst ai is assigned to work during time slice tj and 0 otherwise, i.e.,

vi, j =
⎧⎪⎨⎪⎩

1 if analyst ai works during time slice tj

0 otherwise
.
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Fig. 3. Nonlinear Optimization problem for Shift Scheduling.

Constraint (1). Constraint (1) of Figure 3 sets one constraint for each analyst saying that that
analyst cannot work for more than MT time slices during any given shift.

Constraint (2). The goal of the second type of constraint is to ensure that each analyst gets a
break periodically. More formally, every time interval of lengthCT is required to have at least one
break in it. For this, suppose we set BRh = [h,CT + h] to be an interval of length CT starting at
time slice th . Hence, we have time intervals such as the following:

BR1 = [1,CT + 1]

BR2 = [2,CT + 2]

. . .

BRn−CT = [n −CT ,n].

For each such interval BRh = [h,CT +h] where 1 ≤ h ≤ n−CT , a break is needed for each analyst.

Thus, for each 1 ≤ i ≤ m and each time slice 1 ≤ h ≤ n−CT , we require that Σj=CT+h

j=h
vi, j ≤ CT −1.

By having this constraint for each and every time window BRh of size CT , we ensure that at least
one of the vi, j ’s is set to 0 that would then be the time slice in which the analyst ai gets a break.

Constraints (3) and (4). The third constraint requires that every analyst gets a lunch break. For
each analyst ai , suppose LT i

h
= [h,L+h]. Intuitively, each LT i

h
interval corresponds to the possible

lunch periods for analyst ai that starts at time th and goes until time tL+h . We require this entire

time to be a break for the analyst, i.e., the value of the variablevi, j should be 0 for each j ∈ LT i
h

if this
interval happens to be the analyst’s lunch break. To express this idea, we define an intermediate
variable ui,h that is set to 1 if analyst ai ’s lunch break starts at time th . Constraint (3) is therefore
as follows:

ui,h =

k=L+h∏

k=h

(
1 −vi,k

)
.

If this is indeed analyst ai ’s lunch break, then vi,h = 0 for all k ≤ h ≤ L + h. This means that
(1 − vi, j ) = 1 for all k ≤ h ≤ L + h, which in turn means that Πk=L+h

k=h

(
1 −vi,k

)
would equal 1 if

the interval LT i
h
= [h,L + h] is indeed the analyst’s lunch break.

Because the analyst gets one and only one lunch break, Constraint (4) says that one and only
one of the possibleui,h ’s must be set to 1. Thus, Constraints (3) and (4) jointly enforce the fact that
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each analyst gets a contiguous lunch break of length L during his shift. But this comes at a cost,
because Constraint (3) is nonlinear.

Constraints (5) and (6). These two constraints ensure that the variables vi, j and ui,h are binary
variables.

4.2 Objective Function

The formulation of the MTAC problem assumes that we have an estimate of the expected number
TAj of true alerts that occur during any given time period tj , 1 ≤ j ≤ n — we can see that we do
have this information from our Dartmouth College data as shown in Figure 2(a) and (b).

Figure 2(a) and (b) show that the distribution of true alerts during weekdays is dominated (at
least at Dartmouth College) by the 12 pm–to–3 pm window. In contrast, there are multiple peaks
during the weekends with attacks between the 3 am–to–4 am windows, as well as between the
12 pm–to–3 pm window and the 6 pm–to–9 pm window. Though these statistics only apply to
the true alerts at Dartmouth College, most medium and large enterprises can generate similar
distributions.

We note that we can estimate TAj from historical data to simply be the mean of the set
{TAj (d ) |d ∈ TD}, i.e., if j is the 10-minute time slot between 10 am and 10:10 am, then the mean (re-
spectively, standard deviation) is simply the mean (respectively, standard deviation) of the number
of true alerts generated during this time window in the historical data.3

The term vi, j · ci is the number of alerts that analyst ai can handle (on average) in one time
slice. Note that when vi, j = 0, i.e., when the analyst is on a break, he or she can handle no alerts
at all. Thus, the summation Σm

i=1vi, j ·ci is the total number of alerts that them analysts can handle
in one time slice tj , and hence TAj − Σm

i=1vi, j · ci is an estimate of the total number of alerts that
would be left “uncovered” in that one time slice tj . By uncovered, we mean that this is the number
of alerts that are not examined/handled by any of the analysts during this time slice. Because this
number could be negative, we take the max of this and 0 in the objective function, i.e., the number
of uncovered alerts in time slice tj would be max(TAj −Σm

i=1vi, j ·ci ). Finally, we sum up the number
of uncovered alerts over time to get the total number of uncovered alerts during a given shift, i.e.,
the total number of uncovered alerts during the entire shift consisting of the time slices t1, . . . , tn
is

n∑

j=1

�
�
max

⎧⎪⎨⎪⎩
0,TAj −

m∑

i=1

vi, j · ci

⎫⎪⎬⎪⎭
�
�
.

The goal of our objective function is therefore to minimize the number of uncovered alerts across
the shift as a whole.

Discussion: We see immediately that the objective function essentially has two levels, where
the outer-level optimization minimizes the total number of uncovered true alerts and the inner-
level optimization ensures that the number of uncovered true alerts cannot be “negative.”

5 EFFICIENT SOLUTION AS A MIXED INTEGER LINEAR PROGRAM

Because the problem of computing shifts involves optimizing an integer program that is bi-level
and nonlinear, it is not directly solvable using existing commercial optimization solvers. In the rest
of this section, we show how this problem can be neatly encoded as a single-level mixed integer
linear optimization problem.

3If so desired, then we can compute the mean and standard deviation using just that portion of the training data that looks
at the last w time windows as opposed to all of them.
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5.1 Non-Linear Constraints Transformation

The formulation of our problem of maximizing the expected number of true alerts that are covered
is nonlinear, which suggests that it can be very expensive to solve it. In this section, we show that
we can represent it in a linear form.

To linearize the nonlinear constraints in Equation (3), we replace each of the nonlinear con-
straints with two linear constraints:

uih ≤ 1 −
L+h∑

k=h

vi,k/M ∀ai ,∀h = 1, . . . ,n −CT , (7)

uih ≥ 1 −
L+h∑

k=h

vi,k ∀ai ,∀h = 1, . . . ,n −CT . (8)

Here M > m is any constant that is larger than the total number of analysts.
The following lemma shows that the constraints are expressed by the following equations.

Lemma 5.1. In the formalized MTAC problem, the constraints expressed in Equations (5)–(8) have

the exact same set of solutions as the Constraints (3), (5), and (6).

Constraints (5), (6), (7), and (8) are equivalent to Equations (3), (5), and (6).

Proof. Since Equations (5) and (6) require both v ′i, js and uj ’s to be binary variables, we only
need to prove the equivalence of Equations (7) and (8) and (3).

We now prove that for each analyst ai and time slice h = 1, . . . ,n − CT , the same values of
vi,k ,k = h, . . . ,L + h will yield the same values of ui,h in both cases. For ease of reference, we
denote the ui,h ’s in Equation (3) and in Equations (7) and (8) as u I

i,h
and u I I

i,h
, respectively. We split

the discussion into the following two cases.
Case 1: vi,k = 0,∀k = h, . . . ,L + h. In this case, it is easy to see that u I

i,h
= Πk=L+h

k=h
(1 −vi,k ) = 1.

At the same time, we have

u I I
i,h ≤ 1 −

L+h∑

k=h

vi,k/M = 1,

u I I
i,h ≥ 1 −

L+h∑

k=h

vi,k = 1,

which implies that u I I
i,h
= 1. Thus, u I

i,h
= u I I

i,h
.

Case 2: vi,k = 1,∃k = h, . . . ,L + h. Denote the sum term ΣL+h
k

vi,k as σ . In this case, σ would be

an integer value between 1 and m: 1 ≤ σ ≤ m. For u I
i,h

, we have u I
i,h
= Πk=L+h

k=h
(1 − vi,k ) = 0. For

u I I
i,h

, we have

u I I
i,h ≤ 1 −

L+h∑

k=h

vi,k/M = 1 − σ/M,

u I I
i,h ≥ 1 −

L+h∑

k=h

vi,k = 1 − σ .

Because 1 ≤ σ ≤ m ≤ M , we have 0 < 1−σ/M < 1. So 1−σ ≤ u I I
i,h
< 1. Combining the constraint

that ui,h ’s are binary variables, we have u I I
i,h
= 0. Thus, u I

i,h
= u I I

i,h
still holds. �

This result therefore shows a way of linearizing the constraints while preserving the same set
of solutions as the solutions of the initial nonlinear integer program.
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Fig. 4. MILP formulation for Shift Scheduling.

5.2 Bi-Level Objective Function Transformation

As pointed out above, the bi-level objective function is also a source of high computational
complexity of the MTAC problem. To handle this problem, we introduce an auxiliary variable w j ,
where for each time slice tj we require thatw j ≥ TAj − Σm

i=1vi, j · ci andw j ≥ 0. We now show that
the optima are preserved as well.

Lemma 5.2. Minimizing the objective in the optimization problem of Figure 3 is equivalent to the

following optimization problem:

minimize

n∑

j=1

w j , (18)

subject to w j ≥ TAj −
m∑

i=1

vi, j · ci ∀tj , (19)

w j ≥ 0 ∀tj . (20)

Proof. Let vj = 〈vi, j 〉, i = 1, . . . ,m denote the decision variable (whether they are working or
not) for all the analysts i at time slice tj . For each time slice tj , we define fj (vj ) � max{0,TAj −∑m

i=1vi, j · ci, j }. The objective can be represented as f (v1, . . . , vn ) =
∑n

j=1 fj (vj ).
Because for each time slice tj there is w j ≥ TAj − Σm

i=1vi, j · ci and w j ≥ 0, we thus have
w j ≥ f (vj ). Let w =

∑n
j=1w j ; we then have w ≥ f (v1, . . . , vn ). Therefore, we can define the

epigraph of function f (v1, . . . , vn ) as

epif = {(v,w ) |v ∈ domf , f (v) ≤ w },

where v = 〈vj 〉, j = 1, . . . ,n is the decision variable for all the analysts throughout all the time
slices. It is easy to see that the optimization described in Equations (18)–(20) is the epigraph form of
minimizing the objective in Figure 3. According to Reference [2], the epigraph form of the original
optimization problem is equivalent. �

Combining Lemmas 5.1–5.2, we immediately have the following theorem.
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Theorem 5.3. The bi-level non-linear formulation of the MTAC problem described in Figure 3 is

equivalent to the single-level Mixed Integer Linear Programming (MILP) in Figure 4.

Important Note. The above theorem is very important, because it reduces the problem of shift
scheduling to maximize expected true alert coverage (or alternatively minimize uncovered true
alerts) to a single-level MILP problem instead of a bi-level mixed integer nonlinear programming
problem. Though MILPs are in general NP-hard to solve, they have been well studied, and there
are existing commercial optimization solvers (e.g., Gurobi and GLPK) that can be used to efficiently
solve these types of optimization problems. For instance, in our experiments with a team of 6 junior,
8 senior, and 8 principal analysts, the problem can be solved within 0.4943 seconds (averaged over
50 runs, using Gurobi).

Note on Identifying the Optimal Mix of Personnel. Given a (biweekly) budget B for the
day/night shift, a CISO (or similar senior leader) of an organization needs to identify the optimal
mix of people to hire. This can be easily done. Suppose Salj , Sals , and Salp denote the biweekly
budget for salaries of a junior, senior, and principal analyst, respectively. Then the organization
can hire up to nj ,ns ,np junior, senior, and principal analysts, respectively, where nj = �B/Salj �,
ns = �B/Sals �, and np = �B/Salp�. We can then identify the optimal mix of junior, senior, and
principal analysts to hire within the budget via a simple procedure. A staffing triple is a triple of
the form (Kj ,Ks ,Kp ) where 1 ≤ Kj ≤ nj , 1 ≤ Ks ≤ ns , and 1 ≤ Kp ≤ np . Given a budget B, let
ST (B) denote the set of all staffing triples. For each staffing triple stj,s,p = (Kj ,Ks ,Kp ) ∈ ST (B), let
MTAKj ,Ks ,Kp

be the number of missed true alerts computed by running the Mixed Integer Linear
Program shown in Figure 4. The optimal staffing is then

(J ∗, S∗, P∗) = arg min
(Kj ,Ks ,KP )∈ST (B )

MTAKj ,Ks ,Kp
.

6 IMPROVING ROBUSTNESS OF SCHEDULING

In the above, we use the average number of true alerts to derive a schedule for the analysts.
However, the actual number of true alerts might be different from the averages due to (1) fluc-
tuations/randomness or (2) existence of an adversary. To handle these two cases and therefore
improve the robustness of PCAM scheduling, we improve the above scheduling algorithm by tak-
ing these two factors into account. Our design is inspired by the idea of “adversarial training” in
adversarial machine learning methods, where the idea is to add additional “adversarial samples”
in the training set so that the learned models are robust to adversarial attacks.

More specifically, the “adversarial sample” is a given true alert distribution TA(l )
1 , . . . ,TA

(l )
MT

denoted by a superscript l . The adversarial true alert distribution can be different from the average
numbers of the distribution from which the probabilities used by PCAM are derived. For each such

distribution TA(l )
1 , . . . ,TA

(l )
MT

, we add it into the constraints in Equation (9),

w j ≥ TA(l )
j −

m∑

i=1

vi, j · ci ∀tj . (21)

With sufficient sampling of such adversarial distributions, we can obtain a super-set of constraints
that take into account changes of true alert distributions. In particular, we consider the following
three types of changes.

PCAM-Fluct: In the first case, we consider fluctuations of true alert distributions for each time
slice. This is done by sampling from a probability distribution (a Gaussian) with the meanTAj and
standard deviation stdj obtained from the historical data:

TA
f luct
j ∼ N (TAj , stdj ), ∀tj . (22)
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PCAM-Shift: In the second case, we consider a “shift” of the true alert distributions by τ time
slices:

TA
shif t
j =

⎧⎪⎨⎪⎩
TAj+τ , if j + τ ≤ MT

TAj+τ−MT , if j + τ > MT
. (23)

Here τ is an integer value that can be positive or negative.
PCAM-Mix: In the last type, we consider a mix of the above two cases, i.e., we first do a shift

of the distribution and then perturb it using a Gaussian distribution:

TAmix
j =

⎧⎪⎨⎪⎩
TA

shif t
j+τ , if j + τ ≤ MT

TA
shif t

j+τ−MT
, if j + τ > MT

. (24)

Note that reversing the fluctuation and shift operations would result in equivalent true alert
distributions.

7 EXPERIMENTAL EVALUATION

We now describe the results of our experiments. We only show results of the PCAM Analyst Shift
Scheduler in the main text—as predicting whether alerts are real or fake is not a contribution of
this article, we show those results in the appendix.

7.1 PCAM Analyst Shift Scheduler

We split 24-hour periods into a day shift (7 am to 7 pm) and a night shift (7 pm to 7 am). We
consider time slices of 10 minutes; hence, our shifts have 72 time slices in them.

The average number of historical true alerts during any given day (respectively, night) time slice
is used to estimate the number of true alerts during the same time slice in the next day (respectively,
night) shift.

7.1.1 Settings. As mentioned earlier, our goal is to come up with a shift schedule that satisfies
various workplace constraints while minimizing the number of uncovered true alerts. As the num-
ber of uncovered true alerts obviously depends upon the number of analysts at different levels
(junior, senior, and principal analysts) that in turn depends on the organization’s budget, we vary
these numbers in the range {2, 3, . . . , 9}. Note that these are used to evaluate how our method
works under different settings with different numbers of analysts. Our main formulation is still
the bi-level optimization introduced in Figure 3 with fixed number of analysts of different types.
Therefore, we do not include the optimization of allocation of number of analysts as part of the
optimization.

For each combination tuple of junior, senior, and principal analysts, we use existing optimization
solvers such as Gurobi and GLPK to solve the MILP in Figure 4 to optimize (minimize) the number
of uncovered true alerts, given their pay and capabilities as described in Table 1. It is important
to note that PCAM can of course also be used in settings where different true alert rates hold and
where the pay rates and capabilities of analysts are different by simply plugging the new values
in instead of those we use in our experiments.

Baseline: We introduce a baseline that maximizes the amount of time worked by each analyst,
subject to the workplace constraints. Specifically, we use the result of the optimization problem
posed in Figure 5 as our baseline with which to compare.

7.1.2 PCAM Shift Scheduling Results. Figure 6 compares the PCAM-optimized schedule and the
baseline for day shifts and night shifts, respectively. The x-axis shows the budget. Given a budget,
PCAM finds the optimal schedule (i.e., mix of junior, senior and principal analysts) to hire and
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Table 1. Biweekly Pay for Analysts

APR Salary Glassdoor (NY) Glassdoor (CA) Glassdoor (US)
Junior 5 $3000 $2500 $3200 $2500
Senior 7.5 $4000 $2750 $3600 $2700
Principal 10 $6000 $3400 $4500 $3375

APR denotes Alert Processing Rate/hr.

Fig. 5. Baseline shift scheduling.

compares the number of uncovered true alerts during the day and night, respectively. For the day
shift, the optimal number found by PCAM to get the number of uncovered true alerts to 0 consists
of 6 junior, 8 senior, and 8 principal analysts at a cost of $98K for a 2-week period. In contrast, for
the night shift, PCAM finds that the best combination consists of 3 junior, 7 senior, and 3 principal
analysts at a cost of $55K for a biweekly period.4 The reason fewer analysts are needed during the
night (at least for the Dartmouth College setting) is intuitively, because there are fewer true alerts
during the night on weekdays.

The figures show that the PCAM-optimized schedule beats the baseline by a hefty margin. It is
better in two respects:

(1) PCAM delivers a superior uncovered true alert rate compared to the baseline. At 98K bi-
weekly, PCAM has 0 uncovered true alerts, while the baseline has about 45.

(2) PCAM saves organizations money—to achieve a day time rate of 0 uncovered true alerts,
the baseline would need $147K for a biweekly period instead of the $98K needed by PCAM.
To achieve a night time rate of 0 uncovered true alerts, the baseline would need $83K for a
biweekly period as compared to the $55K required by PCAM.

Financial Implications. In short, the use of PCAM would save $49K per biweekly period for
daytime salaries and $28K per biweekly period for nighttime salaries. As a consequence, the total
saving in a year if PCAM was used instead of the baseline would be $77K ×24 biweekly periods,
which is $1.848M per year. Please note that this estimated saving depends upon many factors—
the salaries noted in Reference [1] and the true alert distributions shown in Figure 2(b) and (a).
These numbers might vary for other organizations depending upon these factors. Moreover, these
numbers assume that the organization in question would like to reduce the expected number of
uncovered true alerts to be near zero. If they are willing to take a risk, then the savings might
drop. Nonetheless, our methods can be used by any organization as long as they can provide these
numbers to PCAM as inputs.

Detailed comparison. Figures 7 and 8 show the detailed number of uncovered true alerts when
varying exactly one of the three njunior ,nsenior ,npr incipal , while keeping the other two fixed us-
ing both the PCAM-generated schedule and the Baseline schedule for day shifts.5 As an example,

4Please note that the salary rates used were from Reference [1] and from glassdoor.com as opposed to Dartmouth College
salaries, which were kept confidential from us. Moreover, benefits are not included in these costs but would be around 30%
of salary. Finally, please note that the number of junior, senior, and principal analysts computed above were based on the
alert data for Dartmouth College’s network. Though these numbers can be different for other organizations, the process
followed in this article can be directly applied to the alert statistics from those organizations.
5Results for night shifts are similar and we put them in the appendix for space concerns.
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Fig. 6. Number of uncovered true alerts of optimized schedule and baseline schedule for day and night shifts.

The x-axes show the biweekly. They-axes show the number of uncovered true alerts. The vertical orange line

marks when the uncovered true alerts for the PCAM scheduler is 0.

Table 2. Uncovered Rates under Various Absence Rates

Humanistic absence 0 0.2 0.4 0.6 0.8 1.0
Day 1.000 0.763 0.529 0.310 0.130 0.007

Night 1.000 0.751 0.516 0.295 0.114 0.009

the first subfigure in Figure 7 shows that when njunior = 2, by varying nsenior and npr incipal

the uncovered alerts could be reduced to 10.2 using the PCAM-optimized day shift. However, in
Figure 8, the subfigure shows that when njunior = 2, by varying nsenior and npr incipal the uncov-
ered alerts could be reduced to 58.3 using baseline day shift. The figures show that the PCAM-
optimized schedule is substantially better than the baseline for every combination of types of ana-
lysts hired.

Humanistic practices. From a humanistic perspective, work shifts may be affected by various
factors such as sickness, family issues, and so on. We use the uncovered rate (UR) of true alerts
to evaluate the performance, which is defined as the number of uncovered true alerts divided by
the number of total true alerts. We define the humanistic absence rate to to be the absent work
capacity divided by the total work capacity. Table 2 shows the uncovered rates for the alerts under
various humanistic absence rates. The uncovered rate is obtained by the simulations based on
historical data. The table shows that PCAM is able to cover more than 75% of the alerts when the
humanistic absence is 0.2 for both day and night simulations. A 20% absentee rate is quite high.
The table therefore shows that even when the absentee rate of analysts is high, PCAM still achieves
good performance and is robust to the humanistic absence of analysts.

7.2 PCAM Shift Schedule Performance with Adversary

We also tested the performance of PCAM in the presence of an adversary. For each type of adver-
sarial distribution, we also report the Euclidean Distance6 from the original distribution. We use

6We also consider other distance metrics such as Bray–Curtis Distance, Cosine Distance and Wave–Hedges Distance. We
refer to Reference [3] for the definitions of the distance metrics. The results using these other distributions are similar and
are shown in the appendix.
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Fig. 7. Results for PCAM Optimized day shift. Each plot shows the number of uncovered alerts when varying

one number of the combination tuple (junior, senior, or principal), while the other two are fixed (the fixed

values are shown in the titles of the subfigures). The first, second, and third rows, respectively, fix the number

of juniors, senior, or principal to hire. The columns indicate the number of the type of analysts that are fixed.

The x- and y-axes represent the number of the two types of analysts that are being evaluated. The z-axis

represents the uncovered alerts.

the UR of true alerts to evaluate the performance, which is defined as the number of uncovered
true alerts divided by the number of total true alerts.

Fluctuations of true alert distributions: In this experiment, we consider an adversarial set-
ting where the true alert distributions are made to fluctuate around the average values of the
historical data. To do this, we randomly sample 100 true alert distributions using the Normal dis-
tribution in Equation (22) with a confidence interval (0.95). Table 3 shows the performance of
PCAM-Fluct and PCAM in this setting. We immediately see that by taking the fluctuations into ac-
count in the formulated optimization problem, PCAM-Fluct performs much better than the vanilla
PCAM for both day and night schedules. Figure 9(a) and (d) show the performance of PCAM-Fluct
with respect to the Euclidean distance between the original and adversarial true alert distributions.
The figures show that the uncovered rate UR increases as the distance between the distributions
increases. This is intuitive, as attacks that are more different from the original distribution will
have higher success rate.

Shifts of true alert distributions: In this experiment, the adversarial samples are generated by
shifting the original true alert distribution by 0.5, 1, 1.5, . . . , 6 (i.e., with 12 types of shift periods).
Table 4 shows the performance of PCAM-Shift and PCAM in this scenario. As in the preceding
experiment, we see that the use of adversarial training enables PCAM-Shift to outperform vanilla
PCAM. Figure 9(b) and (e) show the performance of PCAM-Shift as the lengths of the time shift
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Fig. 8. Results for baseline day shift. Each plot shows the number of uncovered alerts when varying one

number of the combination tuple (junior, senior, or principal), while the other two are fixed (the fixed values

are in titles of the subfigures). The meanings of the rows, columns, and x-, y-, and z-axes are the same as in

Figure 7.

Table 3. Performance of PCAM-Fluct and PCAM with

Fluctuations in True Alert Distribution

Total true URPCAM URPCAM−F luct Distance
Day 502.270 0.717 0.340 132.437

Night 498.220 0.772 0.416 154.811
Results are averaged from 100 samples for both day and night schedules.

increases. In this setting, we can see that there is no clear pattern of UR with respect to the length
of the temporal shifts. Our conjecture is that the true alert distribution with larger hours of shift
to the original distribution is not necessarily further away from the original distribution.

Mixed adversarial true alert distribution: In this experiment, we consider both fluctuations
and time shifts in the true alert distribution. Table 5 shows the performance of PCAM-Mix and
PCAM in this scenario. We can see that PCAM-Mix consistently outperforms PCAM by a large
margin. Figure 9(c) and (f) show the performance of PCAM-Mix with respect to the distance to the
original true alert distribution. As in the case of PCAM-Fluct, the figures show that the Uncovered
Rate increases as the distance increases.

7.3 Live test of PCAM

The acid test of the PCAM architecture would be to see how the entire PCAM architecture holds
up. If analysts were scheduled in accordance with the schedule computed by PCAM and then the

ACM Transactions on Internet Technology, Vol. 22, No. 3, Article 67. Publication date: January 2022.



67:16 H. Chen et al.

Fig. 9. Performance of PCAM-Fluct, PCAM-Shift, and PCAM-Mix with respect to distance of the original and

adversarial true alert distributions, for day (upper row) and night (lower row) schedules. The x-axis represents

the Euclidean Distance or number of shifts. The y-axis represents the UR by each schedule. Results of other

distance metrics are shown in the appendix.

Table 4. Performance of PCAM-Shift and PCAM with Shift in True

Alert Distribution

Total true URPCAM URPCAM−Shif t Distance
Day 279.000 0.434 0.021 58.348

Night 213.000 0.425 0.033 42.795
Results are averaged for 12 samples for both day and night schedules.

Table 5. Performance of PCAM-Mix and PCAM with Both

Fluctuations and Shifts in True Alert Distribution

Total true URPCAM URPCAM−Mix Distance
Day 502.270 0.745 0.340 143.456

Night 498.220 0.801 0.409 166.163
Results are averaged for 100 samples for both day and night schedules.

real-world alerts occurred as they did occur in the live test, then how many true alerts would be
uncovered.7

We also did an end-to-end test using the previously determined numbers of analysts for the
day and night shifts respectively on the live test (6 days). In this live test, we created the analyst
schedules before the day and night shifts and then played back the actual arrival of alerts during
the 6 days of the testing period. Not a single true alert went uncovered by the schedules generated by

the PCAM model.

7The schedule assumed 6 junior, 8 senior, and 8 principal analysts for day time schedules and 3 junior, 7 senior, and 3
principal analysts for night time schedules.
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8 CONCLUSION

Most cyber-security operations centers experience a huge flood of security alerts. This deluge is
typically managed by a small team that is usually overworked. Because of the sheer volume of
alerts, true alerts can be missed from a sea of false alarms.

In this article, we propose a data driven bi-level optimization algorithm to solve the following
problems. First, given a distribution of true alerts during the day, how best should a given set of
analysts be scheduled to minimize the expected number of true alerts that are not handled by an
analyst. Second, given a desire to reduce the expected number of true alerts that are uncovered to
be below a desired upper bound, how many analysts of different types do we need? Third, how
can a predictor that predicts whether a given alert is real or merely a false alarm be incorporated
into the system?

To solve these problems, we propose the PCAM system. PCAM has a “before the shift” mode
in which distributions of true alerts over time are used to create a schedule, and a “during the
shift” mode in which alerts predicted to be true by PCAM are handled by analysts who are work-
ing during that time period. We show that PCAM’s end-to-end performance is excellent. Using a
44-day training period with real alert data to train the PCAM model and to capture the desired
distributions of true alerts during the day, we are able to show that the end to end PCAM system
created schedules that did not miss a single true alert during a 6-day test window. Moreover, our
predictive model also generated excellent results during live testing over the 6-day window, out-
performing the performance in training. Last, we also show that PCAM does well under various
kinds of adversarial (or natural) fluctuations/shifts between the statistics used during training and
the statistics seen when the system is subsequently used.

APPENDICES

A PCAM ALERT CLASSIFIER

We also briefly introduce our alert classifier that distinguishes true alerts from false ones. A number
of threat detection systems [6, 10, 14, 20] have sought to reduce the false alarm rate. As we can
use any such framework within PCAM, we do not discuss this further here. Note that we are not
claiming technical novelty in this component but describing it nonetheless for completeness of the
PCAM architecture. We used the output logs of two security products used at Dartmouth College’s
ITC offices, who run Dartmouth’s network to define three broad categories of features related to
alerts. These include the following:

• Systems-Related Features: Systems related features included information such as the time of
receipt time (of a suspect packet), the identity of the logging server, and more.
• Traffic-Related Features: Traffic related features contain proxies for IP addresses, communi-

cation ports, the transmission protocol used, and more.
• Threat-Related Features: Threat-related features include the category of the threat and the

severity of the threat according to that security product.

We preprocessed data by categorizing sparse attributes, discarding single-value attributes, dupli-
cate attributes, and attributes with too many missing values. Table 6 describes the different types
of variables we finally ended up with.

We ran 10 off the shelf classifiers to learn classifiers that separate true alerts from false ones.
Seven of the 10 classifiers are “traditional” classifiers: Decision Trees, Logistic Regression, Bernoulli
Naive Bayes, Gaussian Naive Bayes, Multinomial Naive Bayes, Random Forest, and Support

Vector Machines (SVM). The other three are neural classifiers including Multi-Layer Percep-

trons (MLP), Google’s Deep and Wide system (DeepWide) and Convolutional Neural Nets
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Table 6. Details of Variables

Serial Number Serial number of the firewall that generated the log.
Log Forwarding Profile The profile used for log filtering and tagging.
Source Zone Indicator of the direction of the connection, which is either outgoing of incom-

ing.
Ingress Interface The network interface device that the session was sourced form.
Egress Interface The network interface device interface that the session was destined to.
Repeat Count Number of sessions with same Source IP, Destination IP, Application, and Sub-

type seen within 5 seconds.
Flags 32-bit field that provides details on session, including PCAP (packet capture),

IPv6, SSL, and so on.
Protocol IP protocol associated with the session.
Direction Indicates the direction of the attack, client-to-server or server-to-client.
Source Location Source country or Internal region for private addresses.
Destination Location Destination country or Internal region for private addresses.
Source Port Source port utilized by the session.
NAT Source Port The source port used by the connection after NAT (network address translation).
Destination Port Destination port utilized by the session.
NAT Destination Port The destination port used by the connection after NAT (network address trans-

lation).
Subtype Subtype of the threat log. Vulnerability means this threat is vulnerability exploit

detected via a Vulnerability Protection profile.
Action Action taken for the session.
Category The category of the URL.
Severity Severity associated with the threat. Reported by threat detectors.
Rule Name Name of the rule that the session matched.

(CNNs). We do not make any claim of novelty about these algorithms—as they give very high
F1-scores and AUCs, there was no point developing a new classifier.

B TRUE ALERT PREDICTION RESULTS

The shift schedules experiments above are used to schedule each analyst’s scheduled breaks and
lunch slots—but they are finalized just before the analyst starts his shift.

The True Alert Predictor component of PCAM looks at alerts as they come in during a shift
and tries to classify each alert as true or false when the alert comes in. We ran two experiments
to assess the accuracy of the True Alert Predictor. In the first experiment, we did a traditional ML
analysis of 44 days of data collected by Dartmouth’s ITC staff. In the second experiment, we did
a 6-day live test of the models learned on the 44 days of data to see how well they performed. As
this component only uses traditional classifiers and is not particularly novel, we do not claim this
as a contribution of this article—just a necessary part of the PCAM architecture.

Historical Data Analysis. We tested each of the seven classifiers on the features described in
Section A. Because our alerts reflect temporal data, cross validation is not an appropriate test.8

To avoid the pitfalls of using cross validation for temporal data, we use rolling window prediction.

8This is because K -fold cross validation would randomly split the data into K chunks. It would then do K iterations: In
each iteration, one of the K chunks would be the test set, while the remaining (K −1) chunks would be used for training the
model. The performance of a classifier would then be obtained by aggregating the performance over the K folds. However,
this is inappropriate for temporally sensitive data, because the training folds can (with K−1

K probability) contain data points

from the future and those might be used to predict outcomes for data in the test fold that might be from the past.
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Table 7. Classifier Performance (True Alert vs. False Alert prediction)

on 44 Days of Data Using Rolling Window Prediction

ROC-AUC F1 score Precision Recall
Decision tree 0.9936 0.8634 0.8866 0.8595

Logistic 0.9992 0.8449 0.8918 0.8124
NB Bernoulli 0.9970 0.2621 0.1572 0.9064
NB Gaussian 0.9905 0.2507 0.1471 0.9941

NB multinomial 0.9967 0.2713 0.1639 0.9059
Random forest 0.9957 0.8806 0.9073 0.8600

SVM 0.9967 0.8538 0.9258 0.8064
DNN-MLP 0.9998 0.8740 0.9350 0.8300

DNN-DeepWide 0.9856 0.8634 0.8990 0.8466
DNN-CNN 0.9810 0.8634 0.8833 0.8300

Table 8. Live Test: Performance of Random Forest

Classifier on True Alert vs. False Alert Prediction on

44 days of live data. Random Forest has the best F1

among all the classifiers

ROC-AUC F1 score Precision Recall
Day 1 0.9931 0.9677 0.9633 0.9722
Day 2 0.9786 0.9649 0.9910 0.9402
Day 3 0.9998 0.9672 0.9987 0.9365
Day 4 0.9913 0.9652 0.9652 0.9652
Day 5 0.9758 0.9374 0.9450 0.9299
Day 6 0.9867 0.9364 0.9717 0.9035

In rolling window prediction, we train our models for the first T days and then predict for day
T + 1—then we learn the model from the first T + 1 days of data and predict for day T + 2, and
so forth. We now report the results for rolling window prediction—for the sake of completeness,
Table 7 contains the results of 10-fold cross validation as well. In our rolling window experiments,
we train on each of the intervals [1, 30], [1, 31], . . . , [1, 43] and then predict for days 31, 32, . . . , 44
respectively, i.e., we train on the first T days and then make predictions for day T + 1 with T =
30, . . . , 43.

Table 7 shows that PCAM’s performance on rolling window prediction is excellent, with Ran-
dom Forest yielding the best F1-Score of 88.06% with a precision of 90.73% and a recall of 86%. In
terms of AUC, the results were almost a dead heat between Random Forest and SVM, with Google’s
DeepWide coming out very marginally ahead. We therefore feel that Random Forest was the best
of the 10 classifiers tested.9

Live Testing Experiments. We also conducted a live test. In this test, we used the best model
(Random Forest) obtained via training on the 44-day window—but then tested it on 6 days of live
data to assess the predictive efficacy of our models. Table 8 shows the result of rolling window
prediction in this case.

9In contrast, the results of K-fold cross validation shown in Table 9 are slightly inflated (due to the methodological flaw
with using cross validation on temporal data) with Random Forest yielding the best F1-Score of 90.85% with a precision of
95.19% and a recall of 86.88%.
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Table 9. Experimental Results Showing Classifier Performance in

Predicting Whether an Alert Is Real or False Using Cross Validation

ROC-AUC F1 score Precision Recall
Decision tree 0.9895 0.9065 0.9488 0.8678

Logistic 0.9992 0.8898 0.9455 0.8404
NB Bernoulli 0.9967 0.2537 0.1476 0.9018
NB Gaussian 0.9906 0.2510 0.1437 0.9915

NB multinomial 0.9968 0.2643 0.1548 0.9013
Random forest 0.9923 0.9085 0.9519 0.8688

SVM 0.9974 0.8887 0.9488 0.8357
DNN-MLP 0.9998 0.9044 0.9614 0.8539

DNN-DeepWide 0.9825 0.8616 0.9576 0.7830
DNN-CNN 0.9840 0.8765 0.9256 0.8378

We see that the predictive accuracy of Random Forest actually increased: the F1-scores for each
of the days went up to 93.64—96.77% with precision also increasing to lie between 94.5% and 99.87%
and recall to lie between 90.35% and 97.22%. The fact that the trained models improved during live
testing suggests that over-fitting did not occur during the training phase.

C PCAM DETAILED SCHEDULING RESULTS FOR NIGHT SHIFTS

Figures 10 and 11 show the detailed number of uncovered true alerts when varying exactly
one of the three njunior ,nsenior ,npr incipal , while keeping the other two fixed using both the
PCAM-generated schedule and the Baseline schedule for night shifts. Results show that the
PCAM-optimized schedule is substantially better than the baseline for every combination of types
of analysts hired during night shifts.
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Fig. 10. Results for PCAM Optimized night shift. Each plot shows the number of uncovered alerts when

varying one number of the combination tuple (junior, senior, or principal), while the other two are fixed. The

meanings of the rows, columns, and x-, y-, and z-axes are the same as in Figure 7.
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Fig. 11. Results for baseline night shift. Each plot shows the number of uncovered alerts when varying one

number of the combination tuple (junior, senior, or principal), while the other two are fixed. The meanings

of the rows, columns, and x-, y-, and z-axes are the same as in Figure 7.
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Fig. 12. Performance for day and night schedules of PCAM-Fluct and PCAM-Mix. The x-axis represents

the distance metrics, including Euclidean Distance, Bray–Curtis Distance, Cosine Distance, and Wave–Hedges

Distance. The y-axis represents the Uncovered Rate by each schedule.
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