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Abstract
Micronutrient deficiency (MND), which is a form of malnu-
trition that can have serious health consequences, is difficult
to diagnose in early stages without blood draws, which are
expensive and time-consuming to collect and process. It is
even more difficult at a public health scale seeking to iden-
tify regions at higher risk of MND. To provide data more
widely and frequently, we propose an accurate, scalable, low-
cost, and interpretable regional-level MND prediction sys-
tem. Specifically, our work is the first to use satellite data,
such as forest cover, weather, and presence of water, to pre-
dict deficiency of micronutrients such as iron, Vitamin B12,
and Vitamin A, directly from their biomarkers. We use real-
world, ground truth biomarker data collected from four dif-
ferent regions across Madagascar for training, and demon-
strate that satellite data is a viable data source for predict-
ing regional-level MND, which surprisingly exceeds the per-
formance of baseline predictions based only on survey re-
sponses. Our method could be broadly applied to other coun-
tries where satellite data is available, and potentially create
high societal impact if these predictions are used by policy
makers, public health officials, or healthcare providers.

Introduction
More than 2 billion people worldwide, including 340 mil-
lion children (Keeley, Little, and Zuehlke 2019), are affected
by micronutrient deficiencies, or the lack of vitamins and
minerals required by the body for healthy functioning and
development (Micha et al. 2020). These micronutrient de-
ficiencies, hereafter referred to as MND, further drive the
global burden of disease but remain difficult to diagnose
since the effects often become visible only when the defi-
ciency is severe (von Grebmer et al. 2014). From a pub-
lic health perspective seeking to reduce MND prevalence
throughout a population, it is important to identify regions
at risk of MND. However, due to the difficulty of diagnosing
MND, regions with MND are unclear to public health orga-
nizations until direct measurements are made, such as blood
draws to measure biomarkers and/or surveys/questionnaires.
Unfortunately, these blood draws and surveys are costly and
time-consuming, and furthermore, quantifying micronutri-
ent levels in a blood sample requires limited, specialized
laboratory equipment, leading to infrequent data collection.
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Due to the difficulty in both types of data collection, we
seek a new data source that may be more scalable, such as
satellite data (i.e., data products derived from raw satellite
imagery). This may at first seem unrelated, as MND status
is unique to an individual, pertaining to an individuals’ nu-
trition, disease status, and other characteristics which cannot
be viewed by satellite. Indeed, prior work applying artificial
intelligence (AI) techniques to satellite data, e.g., in estimat-
ing crop type (Gadiraju et al. 2020), often search for fea-
tures directly observable by satellite. Predicting an indirect
feature such as MND prevalence brings additional technical
challenges, including choosing relevant satellite data, link-
ing a limited amount of ground truth data from individuals
to satellite data to train machine learning models, and sup-
porting interpretability for public health experts.
Contributions: Through our novel system, we establish that
satellite data can be used to predict MND at a regional level
despite these challenges. In fact, our system is the first to
predict MND from a regional level, as measured directly
from real-world, ground truth biomarkers, using satellite
data. This involves i) aggregating individuals’ MND states
from biomarker data over geographic regions to align with
satellite data, ii) using segmentation to generate custom fea-
tures of importance, specifically market locations in this
case, iii) providing scalablity with automatic feature selec-
tion, which performs comparably to expert feature selec-
tion, and iv) two prediction paradigms to handle the chal-
lenges that arise from limited ground truth data: logistic re-
gression, which also naturally handles the pressing need for
interpretability of predictions in the field, and multi-layer
perceptron with domain adaptation. Not only does this sys-
tem achieve good accuracy, but this also results in improved
performance compared to the baseline of survey-based pre-
dictions. We believe this MND detection system could be
broadly applied to other countries where satellite data is
available, potentially leading to more information for pub-
lic health interventions and high societal impact.

Background and Related Work
AI for Social Impact and Satellite Data: Existing applica-
tions of AI related to nutrition include food security, agri-
culture, food rescues, and even foodborne illnesses (Shi,
Wang, and Fang 2020). Some of this literature makes use
of satellite and other remotely-sensed images, such as agri-



cultural productivity assessments and planning (Nakalembe
2020). Land cover mapping (Poortinga et al. 2019) and so-
cioeconomic status prediction (Ayush et al. 2020) have also
been explored. However, these factors are arguably directly
visible in satellite data, e.g., to predict socioeconomic sta-
tus, Ayush et al. (2020) search for objects directly in satel-
lite data, such as trucks. Dengue fever prediction in Ab-
dur Rehman, Saif, and Chunara (2019) is based on identi-
fying standing water locations (mosquito habitat), and find-
ing buildings and roads to indicate human presence. While
dengue status is not directly visible, these direct causes are.
MND prediction is more indirect, as it may depend on dis-
ease as well as nearby agriculture, forests, etc. Dengue pre-
diction is also based on epidemic modeling, which is essen-
tially a time series prediction that does not apply for MND.
Possible Causes of MND: The causal mechanisms of MND
are complex, but there are multiple factors that likely influ-
ence MND, including environmental (e.g., forest presence),
epidemiological (e.g., malaria), and socio-economic factors.
One of the primary environmental factors studied for its im-
pacts on MND is forests. Generally, research indicates that
access to forests may improve dietary diversity, an assess-
ment of the range of food groups consumed over a period of
time that is typically used as a proxy for sufficient nutrient
intake (Steyn et al. 2006), which is typically measured us-
ing survey responses detailing foods consumed. Forests may
directly support dietary diversity from bushmeat and wild
fruits, provide an additional source of income through the
sale of forest products, or support regional livestock produc-
tion (Sunderland, O’Connor et al. 2020). A study on chil-
dren’s diets across 27 developing countries, including Mada-
gascar, finds that close proximity to forests improved the
household prevalence of Vitamin A- and iron-rich foods by
27% (Rasolofoson et al. 2018). Ickowitz et al. (2014), one of
the most similar studies to ours, use satellite data to focus on
dietary diversity, fruit and vegetable consumption, and ani-
mal source food consumption in children using tree cover,
road location, and urban population information.

As an example of socioeconomic factors, Koppmair,
Kassie, and Qaim (2017) show that access to food markets in
Malawi plays an important role in supporting dietary diver-
sity, particularly for providing foods that local agricultural
production cannot support. Markets may directly provide
food, and/or may provide additional sources of income for
local residents through agricultural and livestock production
sales, which can indirectly improve dietary diversity. Agri-
culture, livestock, and water supply also play an important
role in health and nutrition (Brown et al. 2014). We further
discuss socioeconomic status in the appendix.

While these methods imply that satellite data can con-
tribute towards predicting MND, dietary diversity depends
only on foods consumed, which may be directly observable
from satellite imagery (e.g., crops or forests). Biomarkers
may capture further subtleties, such as individual character-
istics or disease. We use additional features to support this.

Data Description
Ground Truth Data: Ground truth data were collected by
Golden et al. (2020) in 2017-2018 in four distinct ecological

Figure 1: Regions studied in Madagascar (left), known (cen-
ter) and predicted (right) markets in these regions.

regions in Madagascar, denoted as the Central Plateau (CP),
Southwest (SW), Southeast (SE), and West Coast (WCO)
(see Fig. 1). CP is at a high elevation, SW is arid, SE is a
mid-altitude rainforest, and WCO is seasonally dry.

In this paper, we will focus on the survey responses and
biomarker data from blood samples that were collected in
Golden et al. (2020). Surveys were provided to individuals
in households, small groups, and more. In total, responses
were collected from 6292 individuals from 1125 house-
holds within 24 communities in CP, SE, SW, and WCO.
Biomarker levels from blood draws were also collected from
a subset of these individuals. We denote the set of individu-
als by p ∈ {0, 1, ..., P}. Each individual has an underlying
MND state, dp, based on a biomarker level,m, that is thresh-
olded by t, derived from public health literature. Therefore,
individual p has dp = 1 if m < t and 0 otherwise. After
combining data from blood draws with surveys and house-
hold GPS locations, we have 2458 samples.

During this data collection process, Golden et al. (2020)
followed all procedures to minimize the risk to local pop-
ulations involved as subjects in the study, as detailed in
our approved IRB protocol from the Harvard T.H. Chan
School of Public Health (IRB16-0166). This included gain-
ing informed consent for all study-related protocols, includ-
ing the future cross-referencing of biological data with re-
motely sensed data products to improve the targeting of
public health responses. To briefly summarize this process,
a community meeting was held to explain the study using
speeches. The research team then visited sampled house-
holds to invite individuals to participate. The prospective
participants were provided more information if they ex-
pressed interest. Furthermore, data are de-identified to limit
the risk of breaches of confidentiality, and we follow Har-
vard IRB protocols to further minimize risk. Gaining in-
formed consent does not automatically alleviate concern of
data misuse and inadvertent consequences; nevertheless, we
took all necessary precautions to protect human subjects in
the study. Please see Golden et al. (2020) for further details.
Satellite Data: Based on the causes of MND in Related
Work, we select publicly available satellite data, much of
which is derived from raw satellite imagery, e.g., using ma-
chine learning. We provide a full description of features, in-
cluding collection time (∼ 2017), in the appendix1, but two

1https://bit.ly/MND-IAAI2022



Figure 2: Illustration of using satellite data, which is first normalized and registered, as features to predict MND. Compare to
pixel-level labels derived from individual MND statuses. In this illustration, both predictions are correct.

we use include livestock population density (Robinson et al.
2014) and weather (McNally et al. 2017).

Once we collect these satellite data at the sites of clinical
data collection, we resample the images to a uniform reso-
lution of about 25x25 m, and save images containing these
points at a size of 308x308 pixels. This provides us with 23
images total with 86 bands containing features. After col-
lecting all satellite data, we normalize each band to within
[0, 1], regardless of whether it was binary, categorical, or
continuous. We then do imputation by taking the nearest
neighbor if there are any missing data in the band.

Problem Description and Aggregation
Given the values from satellite data for a pixel in a region as
input, our goal is to predict MND presence (classification)
or prevalence (regression) in that pixel as the output. Ground
truth labels are derived from biomarkers in blood samples.
Define Grid with Satellite Data: More specifically, we rep-
resent the input, i.e., the satellite data, via a multidimen-
sional image array, S. There are 23 S in our dataset, as re-
gions are large. Therefore, we add an overall image index,
Sl,r, where r represents the current region, and l represents
the image index within that region. Each Sl,r is indexed by
i for rows (y-axis), j for columns (x-axis), and k (z-axis) for
bands, i.e., the individual satellite data bands such as forest
cover, weather, and presence of water.
Aggregation to Link Data: To link the two data sources,
we rely on locations. Each p (individual, see Data Descrip-
tion) is associated with some gp, a geographic coordinate.
Each Sl,r

i,j is associated with a set of geographic coordinates,
Gl,r

i,j . We may now find the set of individuals, P l,r
i,j , whose

locations fall within each pixel, such that gp ∈ Gl,r
i,j . We find

their underlying MND states, dp, to calculate MND preva-
lence, the percentage of individuals who have MND as de-
fined by biomarker levels. This prevalence, vl,ri,j , is our label:

vl,ri,j =

∑
p∈P

l,r
i,j

dp

|P l,r
i,j |

, (1)

where |P l,r
i,j | =

∑
p∈P l,r

i,j
1 is the cardinality of set P l,r

i,j . We

may threshold vl,ri,j for a classification task, or predict the

explicit value directly as a regression task. Please see Fig.
2 for an illustration. In our dataset, this leads to 300-500
(about 0.02%) pixel labels depending on the micronutrient.

Formally, our goal is to train a region-specific ML model
frω(·) parameterized by ω for each of the 4 regions, where
given input training data Sl,r

i,j in the training set, the model
is optimized to minimize the discrepancy between predic-
tion v̂l,ri,j = frω(S

l,r
i,j ) (see Fig. 2) and the ground truth label

vl,ri,j : minω ESl,r
i,j∈Sr

tr
D(v̂l,ri,j , v

l,r
i,j ) where D(v̂l,ri,j , v

l,r
i,j ) could

be, e.g., mean squared error (MSE) for regression, or cross-
entropy (CE) for classification. ESl,r

i,j∈Sr
tr

is an expectation
taken over all pixels in the training set Sr

tr in region r, for
each micronutrient. We assume the data are i.i.d.

Prediction Methodology
Market Detection: As discussed in Related Work, the pres-
ence of markets is an important factor for MND. We would
consequently like to add markets as an extra feature on top
of the existing satellite data products. Yet, it is difficult to
know where all markets are located in Madagascar. We only
know of those specifically mentioned during the focus group
surveys conducted in Golden et al. (2020).

To add this, we therefore start by comparing the known
market locations from the survey data responses with satel-
lite data, and infer that the number of buildings within town
clusters and the proximity to roads may be used as predic-
tors of market presence in Madagascar. Specifically, we de-
termine empirically that 20 buildings and one road within
about 0.8 km2 are highly indicative of market presence.

In order to apply these thresholds in an automatic market
detection pipeline, we first have to locate roads and build-
ings. While OpenStreetMap (OSM)2 provides building and
road segmentation data, it is not always complete. This is es-
pecially true in our regions of interest. As a result, we train
a satellite image-based segmentation model.

For ground truth data to train this segmentation model, we
use nearby OSM building labels where they are more com-
plete. In particular, for each of the four regions in Madagas-
car, we automatically identify the closest densely-clustered

2www.openstreetmap.org



OSM building labels to the known market locations. These
labels are saved to the building segmentation training set,
along with high-resolution images from the Google Maps
Static API3. For each region, the training dataset contains
roughly 100-200 training images and at least 500 corre-
sponding OSM building labels across all images. Each indi-
vidual image has 600x600 pixels, with a 0.46 m resolution.

For the building segmentation model, we use a U-Net
convolution network (Ronneberger, Fischer, and Brox 2015)
with a ResNet-34 encoder pretrained on ImageNet. The U-
Net architecture, originally developed for biomedical image
segmentation, is commonly used for satellite image segmen-
tation, and is particularly useful for training on smaller train-
ing sets such as the sparse OSM building label data. The
satellite image training set is augmented with random flips,
rotations, and resizes. Binary cross entropy is used as the
loss function, and we use the Adam optimizer with a learn-
ing rate of 1e-2. The model is trained using a batch size of
16. Results are shown in Fig. 1. The building segmentation
model and thresholding achieves 0.86 precision in detecting
the ground-truth markets from survey data. We include these
as features in our data by drawing radii of multiple distances
around each market, so that pixels in this layer represent the
number of markets within a certain radius. We create these
radii masks given healthcare center coordinates (Exchange
2020) as well, bringing us to 90 total bands. While we focus
on markets here, this segmentation process could be applied
to generate other satellite image-based features that do not
already exist, such as custom landcover maps.
K-Medoids-based Feature Selection: It is helpful to have
many features, but not all features are necessarily informa-
tive. The risk of overfitting when using all 90 bands, or noise
in the data, can be harmful when dealing with limited data.
A straightforward idea is to use knowledge from domain ex-
perts to select only features that are most important for pre-
dicting MND in a particular region. However, this introduces
two more issues. First, the feature importance of different
regions may vary drastically due to different ecologies. In
Madagascar, for example, certain agriculture, such as pulses,
are only present and predictive of MND in some regions. It
would require a significant amount of manual work to spec-
ify the set of important features for each area. Second, the
causal mechanisms behind MND are not fully understood.
Therefore, it is critical to come up with an automatic feature
selection procedure that effectively filters out uninformative
features with minimal manual effort.

We start by removing any bands that are always 0 through-
out the full dataset (i.e., Si,j,k = 0,∀i, j), leading to 69 fea-
tures. We then use the K-medoids clustering method (Park
and Jun 2009) to group highly correlated features. Each
point in our space is a vector of individual pixel values in an
image, such that the dimension of the space is the number of
pixels. We use Pearson’s correlation coefficient as the dis-
tance metric between features. Similar to K-means cluster-
ing, K-medoids clustering also aims at partitioning the data
points (in this problem, the different satellite bands) into dif-
ferent clusters, and minimize the sum of distances between

3developers.google.com/maps/documentation/maps-static

points labeled to be in the same cluster and a point desig-
nated to be the center of that cluster. However, K-means uses
the central position (centroids) as the designated point, while
K-medoids uses a point that actually exists in the set of data
points (in our case, an existing satellite data band). As such,
we are able to use the medoid band to represent the group of
correlated bands, preserving interpretability.

We post-process the data, transforming the image into a
feature matrix with the 300-500 (0.02%) ground truth pixels.
Prediction with Logistic Regression: We first use a simple
but effective logistic regression model. We choose logistic
regression as one of the underlying ML models in this paper,
due to its following advantages. First, it has fewer weights
compared to other models such as deep neural networks, and
therefore is less prone to overfitting. This is particularly im-
portant given the limited amount of data we have and the
high-dimensional feature space. Second, it is interpretable
by itself (as shown in experiments, e.g., Fig. 5), where the
weights ω of different features directly indicate the im-
portance of the features in determining the prediction out-
come. Moreover, compared to post-hoc model-free explana-
tion methods such as LIME (Ribeiro, Singh, and Guestrin
2016) and SHAP (Lundberg and Lee 2017), which only pro-
vide instance-level explanations, the weights of logistic re-
gression models imply feature importance at an aggregated
level, which we show could provide important insights to
public health experts. We primarily focus on region-specific
prediction for tailored interpretation and results, but we also
train using all regions’ training data combined and predict
on each regions’ test set, which we call Naively Combined.
Prediction with Multi-layer Perceptron and Domain
Adaptation: Another strategy to address limited training
data is domain adaptation (Huang et al. 2006), which allows
us to use data from all 4 regions as follows: The target do-
main is the region of Madagascar in which we are making
our predictions. The source domains are the other 3 regions,
which we would like to use for augmentation. We project all
4 into a domain-invariant latent representation with a single
hidden layer (5 neurons) and the loss function:

l = α ∗ lsrc + ltgt + λ ∗ ltransfer (2)

where lsrc and ltgt are the binary cross-entropy loss in the
source and target domains. ltransfer is the CORAL loss
(Sun, Feng, and Saenko 2016) between the source and target
domains. α and λ are hyperparameters, and are tuned to be
0.1 and 0.01, respectively, out of {0.01, 0.1, 1, 10}. Finally,
we predict on the target domain test set.

Results
We present experimental results using 4-fold cross-
validation (i.e., data from one region are broken into 4 folds).
Due to the limited amount of data, it is impractical to have
more folds. We primarily report Area Under the Curve -
Receiver Operating Characteristics (AUC-ROC, or AUC in
short) to evaluate the MND classification tasks, and discuss
recall in the appendix. Note that we only report the mean
AUC values averaged over the 4 folds as the standard de-
viation becomes trivial for only 4 folds. All data collection
and experimentation rely on the default, free resources on
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Figure 3: Comparison of survey-based (with or without feature selection) and satellite data-based MND prediction by regions.

Table 1: Frequency of each feature appearing in either the
top 3 positive or negative coefficients. The 10 (out of 21)
features with the highest appearance frequencies are shown.

Feature Description Frequency
Chicken population density 9
Cattle population density 8
Net shortwave radiation flux 7
Presence of market within 7.5 km 6
Soil moisture in 100 - 200 cm underground 6
Soil temperature in 10 - 40 cm underground 5
Near surface wind speed 4
Surface pressure 4
Fire (temperature of pixel) 4
Presence of market within 3.75 km 3

Google Colab4, and training for all 4 folds takes less than
1 minute in general for both logistic regression and domain
adaptation.

a) Is our prediction accurate? We compare with predic-
tions made by survey data only, as is similar to prior work
such as (Ickowitz et al. 2014). The results are shown in
Fig. 3. For survey data, we tested two versions, the original,
full amount of data, and a version with one simple level of
feature selection. In this case, we selected features which we
believed could reasonably be seen or inferred from satellite
data. When comparing both survey-based predictions with
our satellite data-based predictions, we can see that satellite
data-based prediction is better in i) all 4 regions for iron, ii)
3 out of 4 regions for Vitamin B12, and iii) 2 out of 4 regions
for Vitamin A. Where it does not outperform survey-based
predictions, it performs comparably with significantly lower
cost. Across all of the 4 regions and all of the 3 types of nu-
trients, the AUC value is higher than 0.6 in 10 cases, and is
close to 0.5 for the other 2 cases. Meanwhile, the F1 scores
of our predictions are on average 0.6 (ranging up to 0.9) and
are also comparable to those based on surveys. Satellite data-
based regression results are comparable to survey-based re-
gression. Therefore, we consider our predictions accurate.

b) Which features are important for MND prediction? As
logistic regression is considered an inherently interpretable

4https://colab.research.google.com
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Figure 4: Comparison feature selection methods, including
removing any bands without data, human expert feature se-
lection, and our K-medoids method, all in region WCO.

model, we focus our analysis on the weights of each vari-
able, particularly those whose absolute values are largest.
First, we build an “important features” list. For each region-
specific model and each micronutrient (in total 3 × 4 = 12
cases), we record the features with the top 3 highest positive
weights and negative weights. We aggregated statistics on
the number of times that each feature appears in these “im-
portant features” lists in Table 1. From this, we observe that
market features are very important, with market presence
within 7.5 km with 6 appearances, and within 3.75 km with
3 appearances. We also observe other interesting trends, in-
cluding that more forest fires are linked to greater rates of
Vitamin A and B12 deficiency in the SE region (rainforest),
but not in other regions that are less reliant on forest prod-
ucts, which may be a useful insight for public health experts.
Fig. 5 illustrates this pattern for Vitamin A in SE.

c) How does the automatic feature selection perform?
To evaluate the performance of automatic feature selection
(FS), we compare with two baselines. First, we consider the
case where there is no feature selection apart from remov-
ing features which are completely zero (i.e., no data) (Satel-
lite Remove 0 FS). We also compare with expert feature se-
lection, in which a public health expert examines the fea-
tures we propose, and groups them based on their knowl-
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Figure 5: Logistic regression weights (x-axis) for Vitamin A,
region SE. Positive numbers mean positive correlation with
MND. Medoid feature names provided (SM: soil moisture).

edge5. They also select a representative band for each of
their groups (Satellite Expert FS). Finally, we consider the
performance of our correlation and K-medoids-based algo-
rithm (Satellite Auto FS). We show results for one of the
regions (WCO) due to space limitation, but trends in other
regions are similar. We can see that both Expert FS and Auto
FS are better than the case where no FS is used, especially
for Vitamin B12. In all three cases, Auto FS always performs
comparably to Expert FS, as it does in other examples that
are not included here, but Auto FS is more scalable.

We also compare the groups that are found by Auto FS
and Expert FS. Very interestingly, we find that in the two
methods, 8 out of 21 group centers overlap: banana, cat-
tle, chicken, goat, maize, presence of markets within 7.5
km, surface pressure, and wind speed. This shows that our
method is choosing features deemed important by a human
expert as well. The above results well demonstrate that our
proposed automatic feature selection method is an effective
while scalable alternative to expert feature selection.

d) How do different prediction paradigms compare?
We compare the region-specific logistic regression models
(Satellite Auto FS), the logistic regression model version
that combines training data from all of the regions (Naively
Combined), and multi-layer perceptron with domain adap-
tation (Domain Adaptation). We present results from re-
gion CP. Here, and overall, we find that Vitamin A and Iron
achieve better performance using Domain Adaptation, while
Vitamin B12 achieves better performance using the logistic
regression-based Satellite Auto FS (or Naively Combined in
other regions). This may be because each micronutrient dif-
fers slightly in its relevant factors (e.g., while Vitamin B12
is primarily based on animal source foods, Iron and Vitamin
A are also found in some fruits and vegetables), and fac-
tors may vary regionally (e.g., some regions are forested).
Clearly, each method works well with limited amounts of
data, but we acknowledge the tradeoffs in interpretability.

5Expert chose 21, which led us to select K = 21
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Figure 6: Comparing AUC of a logistic regression model
trained by naively combining training data from all re-
gions, a multi-layer perceptron with domain adaptation, and
a region-specific logistic regression model, all in CP.

Conclusion and Discussion
In conclusion, satellite data is a viable data source to use
for MND prediction at a public health scale. We presented
a system relying on aggregation of individual MND states
over geographic regions, search for relevant features, such as
markets, automatic feature selection which performs compa-
rably to human expert feature selection, and domain adapta-
tion and logistic regression prediction models. This system
worked well even with limited ground truth biomarker data.
Deployment Considerations While our system has not yet
been deployed, we would like to emphasize several deploy-
ment considerations. This methodology would not replace
surveys and blood samples collected among communities.
Rather, we believe it should be used to cover gaps in that
data collection, e.g., where data could not be collected, or
in between collections. To do this, public health officials,
policymakers, healthcare workers, or individuals can load
publicly available, current satellite data and apply the ex-
isting model, without any survey or blood sample data. We
can then update these models when another data collection
occurs. This also applies for deployment in other countries.
We plan to develop a web application to load satellite data
at the desired time and location, and the current proposed
model, to provide predictions. We plan to iterate on this with
potential users, including officials from Catholic Relief Ser-
vices, Médecins Sans Frontières, and the Ministry of Health
in Madagascar. In the meantime, code and satellite data are
available6, while ground truth data are withheld for privacy.
Future Work: We began preliminary experiments into
sparse segmentation and spatial aggregation to further in-
clude spatial patterns in the prediction step, but they require
further refinement before deployment. We also encourage
the use of custom features, as illustrated with markets. Most
importantly, we believe there is ample room for further re-
search, and a great deal of promise for broad application to
inform future public health interventions.

6https://github.com/exb7900/mnd-iaai2022
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