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Abstract

Natural Language to SQL (NL2SQL) enables natural language ac-
cess to structured data, but LLM-based methods can be inefficient
for real-time use and repetitive query patterns. We present AutoRu-
1eSQL, a hybrid system that combines template-based fast paths
with LLM fallback and offline bootstrapping. Empirical results show
that it reduces latency by over 12.6% and improves execution accu-
racy by up to 4.0%, when combined with existing NL2SQL methods.
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1 Introduction

Natural language to SQL (NL2SQL) allows non-technical users to
query structured data using plain language [2]. These systems
translate natural language questions into executable SQL queries,
lowering barriers to data access for domains such as healthcare,
public services, and business analytics. Recent advancements in
large language models (LLMs) have significantly improved NL2SQL
performance. Benchmarks such as Spider [8] and BIRD [4] show
that these models can handle complex schemas and generate accu-
rate SQL queries.

However, LLM-based solutions are often slow and costly for
real-time deployment, particularly in high-frequency query envi-
ronments like clinical dashboards or municipal portals. These sys-
tems often rely on multiple LLM calls for schema linking, candidate
generation, and reranking, leading to increased latency and com-
putational cost [6]. Moreover, many such queries follow recurring
patterns, making full LLM inference unnecessary.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than the
author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.

CIKM °25, Seoul, Republic of Korea.

© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-2040-6/2025/11

https://doi.org/10.1145/3746252.3761438

We propose AutoRuleSQL, a hybrid framework that combines
fast rule-based query resolution with asynchronous LLM-based
template bootstrapping. Incoming queries are matched against a
template library; if matched, SQL is generated instantly. Otherwise,
the system falls back to an LLM specialized in NL2SQL. Validated
outputs from the LLM are later used to create new templates offline.

This design enables low-latency query resolution while continu-
ously expanding coverage. On the Spider test set, it reduces query
latency by over 12.6% and improves execution accuracy (EA) by up
to 4.0%, demonstrating its effectiveness for real-time deployment.

2 Methodology

We propose an adaptive hybrid framework that consists of two
primary components: a real-time query processing engine and an
offline template generation module. The overall architecture is
illustrated in Figure 1.

2.1 Real-time Query Processing

Atruntime, each incoming natural language query (NLQ) is matched
against a set of predefined templates. Each template contains:

(1) A pattern with named capture groups (e.g., datetime, topk).
(2) A corresponding SQL template with placeholders to be filled
using the capture values.

When a query matches a template, the captured slot values are
inserted into the SQL template to generate the final SQL query. Tem-
plates are designed to cover commonly observed query categories
such as date filters, top-k, aggregation, and comparison.

If no template matches the incoming NLQ, the query is forwarded
to a fallback NL2SQL component—typically a specialized LLM (e.g.,
OmniSQL [3]) or an NL2SQL framework (e.g., DIN-SQL [5] and
CHESS [7])—to generate the corresponding SQL query.

2.2 Offline Template Generation

As a continuation of the fallback path described in Section 2.1, this
module enables the system to learn from validated LLM outputs
and expand its template library. When a new (NLQ, SQL) pair is
successfully validated—through correct execution and optional user
approval—it is added to a queue for offline template induction.
During system idle periods, a background worker first identi-
fies the query category associated with the (NLQ, SQL) pair. It
then prompts a template LLM—either a proprietary model or an
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Figure 1: An illustration of the AutoRuleSQL hybrid workflow.

open-source alternative—with category-specific instructions to gen-
erate a reusable template, consisting of a matching pattern and a
parameterized SQL template (see Section 2.1).

To ensure correctness and consistency, a newly generated tem-
plate is accepted into the template library only if its output SQL
is validated—specifically, it must be structurally equivalent to the
original SQL via normalization, and the execution results must be
identical. Once validated, the template is added to the library, en-
abling the system to handle similar future queries instantly without
invoking the LLM.

The background worker runs at a lower priority than the real-
time query engine and is designed to pause whenever the system
is actively processing user queries. To manage memory and lookup
efficiency, the template library maintains a fixed-size cache using a
least frequently used (LFU) replacement policy, retaining only the
top-k most accessed templates over time.

3 Experiments

Using GPT-4.1 on the Spider test set, AutoRuleSQL converted 25.5%
of queries into reusable templates with an LFU cache of size k =
1000.

To evaluate generalization, we modified the Spider test set by
replacing slot values in template-matched queries with unseen ones.
We compared AutoRuleSQL against two baselines: OmniSQL-7B
(bfloat 16, using greedy search), a specialized NL2SQL language
model, and DIN-SQL, an NL2SQL framework paired with GPT-4.1.
All methods were evaluated on SQL generation time and EA, using
an AMD EPYC 7532 CPU and an Nvidia A100 40G GPU.

Table 1: Comparison of SQL generation speed and EA.

Method Avg Time (s) EA (%)
OmniSQL-7B 0.20 87.3
OmniSQL-7B + AutoRuleSQL 0.19 88.6
DIN-SQL (GPT-4.1) 5.54 79.5
DIN-SQL (GPT-4.1) + AutoRuleSQL 4.84 82.7

Table 1 shows that the AutoRuleSQL integration improves both
latency and EA. With OmniSQL-7B, it reduces average generation
time from 0.20s to 0.19s and increases EA from 87.3% to 88.6%. With

DIN-SQL, it reduces time from 5.54s to 4.84s and raises EA from
79.5% to 82.7%.

In addition to these improvements, AutoRuleSQL handles fre-
quent and previously seen queries through lightweight templates,
which execute on CPU without invoking LLM inference. This en-
ables more efficient CPU-GPU resource allocation.

4 Conclusion

AutoRuleSQL combines rule-based matching with LLM fallback
and offline template bootstrapping to reduce latency and improve
efficiency in NL2SQL tasks. It adapts over time by learning new tem-
plates from validated queries, achieving higher accuracy with lower
response times. Future research can further adapt this approach to
domains like log analysis and system monitoring [1].
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