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ABSTRACT

Reinforcement learning (RL) has emerged as a promising tool for combinatorial
optimization (CO) problems due to its ability to learn fast, effective, and generaliz-
able solutions. Nonetheless, existing works mostly focus on one-shot deterministic
CO, while sequential stochastic CO (SSCO) has rarely been studied despite its
broad applications such as adaptive influence maximization (IM) and infectious
disease intervention. In this paper, we study the SSCO problem where we first
decide the budget (e.g., number of seed nodes in adaptive IM) allocation for all
time steps, and then select a set of nodes for each time step. The few existing
studies on SSCO simplify the problems by assuming a uniformly distributed budget
allocation over the time horizon, yielding suboptimal solutions. We propose a
generic hierarchical RL (HRL) framework called wake-sleep option (WS-option), a
two-layer option-based framework that simultaneously decides adaptive budget al-
location on the higher layer and node selection on the lower layer. WS-option starts
with a coherent formulation of the two-layer Markov decision processes (MDPs),
capturing the interdependencies between the two layers of decisions. Building on
this, WS-option employs several innovative designs to balance the model’s training
stability and computational efficiency, preventing the vicious cyclic interference
issue between the two layers. Empirical results show that WS-option exhibits
significantly improved effectiveness and generalizability compared to traditional
methods. Moreover, the learned model can be generalized to larger graphs, which
significantly reduces the overhead of computational resources.

1 INTRODUCTION

Combinatorial optimization (CO) problems cover a broad spectrum of application domains, such
as social networks [45, 2], public health [17, 29], transportation [7], telecommunications [8], and
scheduling [40, 55]. Hence, much attention has been drawn from both the theory and application
communities toward solving CO problems. Recently, there have been studies using reinforcement
learning (RL) to learn generalizable heuristic policies for CO problems on graphs [24, 39, 14, 5, 26, 6].
The RL policy is trained on a set of previously seen training graphs and generalizes to unseen test
graphs of similar structure. This policy is usually represented using graph embedding methods such
as structure2vec (S2V) [12] and graph convolutional networks (GCNs) [25]. However, most existing
studies focus on one-shot deterministic CO, while research on another broad class of CO problems,
which contain stochasticity and must be solved sequentially over multiple time steps, remains limited.

Problem Statement In this paper, we study the sequential stochastic CO (SSCO) problem where
we first decide the budget allocation for all the time steps, and then select a combination of nodes for
each time step. Given a graph G = (V,E), where V and E represent the set of vertices and edges on
the graph, respectively, the number of time steps T , and the total budget K for selecting nodes, the
task is to decide 1) an allocation K1,K2, . . . ,KT of budget over the time horizon, together with 2) a
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sequence of node sets S1, S2, . . . , ST ⊆ V , such that

maximize
K1,...,KT
S1,...,ST

∑T

t=1
rt(St) (1a)

subject to
∑T

t=1
Kt ≤ K, (1b)

|St| ≤ Kt, ∀t = 1, . . . , T, (1c)
Kt ∈ N, ∀t = 1, . . . , T, (1d)
St ⊆ V, ∀t = 1, . . . , T. (1e)

Here, rt(St) denotes the reward obtained from the nodes in set St at the time step t. SSCO has a wide
range of real-world applications such as resource allocation in wireless communication networks
[32], route planning [22], and adaptive influence maximization (IM) [42, 48].

As far as we know, there are not many works that address SSCO using RL; two notable examples
are adaptive IM in [10] and medical resource allocation for epidemic control in [41]. However, they
assume that the budget is evenly allocated across all the time steps (i.e., Kt = K/T, ∀t), which
may not be optimal in stochastic environments or when additional information or feedback becomes
available over time. These scenarios need adaptive sequential decision-making. For example, in the
adaptive IM problem, an even allocation policy cannot adapt to sudden changes and uncertainties,
leading to resource shortages at critical times or redundancy at less important times. Additionally, it
lacks the flexibility to adjust strategy when more important information becomes available.

Despite its criticality, solving SSCO is extremely challenging due to the following factors: 1)
Combinatorial complexity. The search space grows exponentially as the graph grows, which makes
it difficult to find the optimal solution efficiently. 2) Stochasticity. Future states and rewards are
uncertain, so the ability to adaptively update the solutions based on the real-time state and stochasticity
in the future is required. 3) Sequential decision making. Decisions are interdependent and require
sophisticated planning that considers both current and future consequences. 4) Scalability. The
methods need to have the ability to be generalized to large-scale problems in the real world.

While traditional RL struggles with these challenges, hierarchical RL (HRL) presents a viable solution
by decomposing complex tasks into simpler sub-tasks to improve learning efficiency. Several works
have contributed to the development of HRL. The option framework models temporally extended
actions, allowing agents to learn at different levels of abstraction [47]. Multi-level approaches use
higher-level managers to set tasks for sub-managers [13]. Data-efficient methods leverage offline
experiences for training [38]. Combining HRL with intrinsic motivation [27] and hindsight experience
replay (HER) [1] further enhances learning.

In this paper, we propose an HRL framework, WS-option, for solving SSCO by jointly considering
budget allocation and node selection, with a coherent definition of MDPs for both layers. The lower
layer is particularly challenging due to the need for explicit definitions of states and rewards. The
MDP formulation directly affects the overall performance of the model. Maintaining model stability
is crucial due to the interdependence and mutual influence of the two layers. To improve model
stability, especially in the higher layer, we adopt MC methods to learn budget allocation, known as
the option policy. To ensure faster convergence and stable operation of the lower layer, we use TD
methods to learn node selection, known as the intra-option policy [3]. These methods ensure that
both layers can run stably and efficiently, avoiding the issue of potential vicious mutual interference.

Our main contributions are as follows.

• We are the first to formally summarize and define the generic class of SSCO problems.
• We design a novel HRL algorithm, WS-option, to solve the formulated SSCO, with major novelties

in terms of the two-layer MDP formulation, and new wake-sleep training procedures to balance the
training stability and efficiency and avoid the potential vicious mutual interference. Our algorithm
is a generic framework that applies to a wide range of SSCO problems of the same nature. For
completeness, we also provide a brief theoretical analysis of the algorithm’s convergence.

• We conduct experiments on two distinct SSCO problem instances – adaptive IM and route planning.
The results show that compared to traditional methods, our algorithm exhibits superior performance
in solving both SSCO problems. In particular, the algorithm is able to generalize to larger unseen
graphs, thus significantly reducing computational overheads for larger-scale SSCO problems.
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2 RELATED WORK

RL for CO RL has been widely used to solve CO problems [35]. Nazari et al. [39] propose a
generic RL framework for solving the vehicle routing problem (VRP), outperforming traditional
heuristic algorithms. Bello et al. [4] introduce neural combinatorial optimization, combining neural
networks and RL to solve the TSP problem. Kool et al. [26] develop an attention-based model using
the REINFORCE algorithm, achieving superior results on various CO problems like TSP, VRP, and
the Orienteering Problem (OP). Khalil et al. [24] combine RL with graph embedding to construct
solutions for CO problems step by step. Chen & Tian [11] present a method where neural networks
iteratively improve combinatorial solutions through learned local modifications. Deudon et al. [14]
introduce a method where policy gradient techniques are used to train neural networks to develop
heuristics for solving the TSP. Emami & Ranka [15] propose Sinkhorn policy gradient methods to
learn permutation matrices for CO problems. Cappart et al. [9] combine decision diagrams with deep
RL to enhance optimization bounds for combinatorial problems. Lu et al. [34] introduce an iterative
approach that leverages REINFORCE to enhance solutions for VRPs. Recent methods have further
integrated search algorithms, such as active search [20], Monte Carlo tree search [16], and beam
search [28], to enhance the solution qualities of RL algorithms during inference time. While these
algorithms show promising results, they typically tackle one-shot deterministic CO problems without
sequential decision-making, limiting their effectiveness for more complex scenarios.

Graph embedding Graph embedding techniques are crucial for RL-based solutions to CO problems,
representing graph structures in continuous vector spaces to preserve structural properties, facilitate
downstream RL tasks, and generalize to unseen (potentially larger) graphs. Node2Vec [18] uses biased
random walks to explore neighborhoods efficiently, which maps nodes to low-dimensional vector
spaces while preserving the neighbor structures. Deepwalk [43], which is inspired by language models,
uses truncated random walks to obtain local node information and learn potential representations.
Significant progress has also been made with graph neural networks (GNN) [44, 58, 53], such as
GCN [25], Graph Attention Networks (GAT) [49] and Graph Transformer Networks [57]. Xu et al.
[54] evaluate the expressiveness of GNNs, comparing them to the Weisfeiler-Lehman test in capturing
graph structures. Li et al. [31] analyze the effectiveness and mechanisms of GCNs in semi-supervised
learning. Ying et al. [56] introduce a method to interpret GNNs by identifying the crucial subgraphs
and features that influence their predictions. Nonetheless, determining the most beneficial graph
embedding technique for RL tasks remains an important research question.

Hierarchical reinforcement learning HRL introduces a hierarchical structure to RL, decomposing
complex tasks into simpler subtasks to improve learning efficiency. The option framework [47]
defines HRL with options as temporally extended actions, which enables agents to learn at different
levels of temporal abstraction. Dayan & Hinton [13] introduce a multi-level RL approach based
on subgoals, where high-level managers set tasks for sub-managers to achieve efficiently. Nachum
et al. [38] propose a data-efficient HRL method using off-line experiences to train higher-level and
lower-level layers, and the results demonstrate its ability to learn complex behaviors. Bacon et al.
[3] develop a method to automatically learn policy, termination function, and intra-option policy in
HRL using intra-option policy gradient and termination gradient, without extra rewards or subgoals.
Vezhnevets et al. [50] divide agent behavior into two levels: the Manager, which sets goals in a latent
space, and the Worker, which executes these goals with primitive actions. Kulkarni et al. [27] combine
hierarchical structures and intrinsic motivation to improve learning in complex tasks. Andrychowicz
et al. [1] introduce a technique called HER that enhances RL by learning from failures as if they were
successes with different goals, and Levy et al. [30] integrate HER with HRL to enhance learning at
multiple levels. Despite their success, these methods often do not address the specific challenges
of SSCO problems, especially the need to handle sequential, combinatorial state-action spaces, and
dynamic environments. Furthermore, they typically do not integrate graph-based representations,
which could significantly enhance their effectiveness when dealing with graph-based CO problems.

3 THE WS-OPTION FRAMEWORK

This section will show how to learn budget allocation and node selection using our proposed WS-
option framework. We begin with a brief introduction to the option framework, followed by the
architecture used in our approach. Subsequently, we will formulate the MDPs for both hierarchical
layers and adopt value-based methods as the backbone RL approach. In particular, to balance training
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stability and computational efficiency, we employ MC methods to learn the Q-function for the higher
layer and TD-learning to learn the Q-function for the lower layer. Additionally, it is important to
note that our model is trained on different graphs that follow a certain distribution to enhance its
generalization ability to unseen, similarly-structured graphs from the same distribution. The network
architecture is shown in Appendix C.1.

3.1 PRELIMINARY: THE OPTION FRAMEWORK

The option framework, proposed by [47], is an implementation of temporal abstraction in RL. It
provides a straightforward way to describe temporally extended actions, known as options, which are
higher-level actions composed of several primitive actions. Formally, an option o is defined by the
tuple (I, πII , β), where

• Initiation set I: a set of states where the option can be initialized. We will assume that any state
satisfies s ∈ I in our problems.

• Intra-option policy πII : a policy that maps states to actions under a given option, controlling the
lower-level actions taken under that option. We use πII as the lower-level node selection policy.

• Termination function β: a mapping β : S → [0, 1] that specifies the probability of terminating the
option in a given state, where S is the state space.

When an agent operates within the option framework, it follows the process: 1) Option selection –
the agent selects an option based on its option policy given a state. 2) Option execution – once the
option is determined, the agent follows the intra-option policy πII until the option terminates. 3)
Option termination – when the termination condition is met, the agent terminates the current option
and proceeds to the next option selection.

In our study, we adopt a slightly different approach to defining options. While at the higher layer,
the option oIt we select represents the budget Kt allocated at the current time step t, we simplify the
information representation when passing the option to the lower layer. Specifically, we use option
oIIt = 1 to indicate that the lower layer should continue selecting nodes, and option oIIt = 0 to
indicate that it should stop selecting nodes and interact with the environment. It is important to note
that to handle cases where the budget allocated by the higher layer is 0 (i.e., oIt = oIIt = 0), we
introduce a null action at,∅ for the lower layer. The null action at,∅ represents directly interacting
with the environment and moving to the next time step. In fact, we achieved very good results by
introducing this null action.

3.2 HIERARCHICAL MDP FORMULATION

Here, we define the MDPs for the two layers of our hierarchical model (c.f. Figure 1). For ease of
understanding, we will take the adaptive IM problem as a running example. More details of both
problems are shown in Appendix C.2 and C.3, respectively.

Environment

𝒔𝑡
𝐼

𝒔𝑡,1
𝐼𝐼

𝒔𝑡,1
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Figure 1: Hierarchical MDPs for SSCO
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3.2.1 HIGHER LAYER MDP

State The state sI = (X, g) ∈ S includes two types of information: node features X (e.g., inactive
or active in adaptive IM problem) and global information g (e.g., the remaining time steps Tr and the
remaining budget Kr).

Option The option oI represents the budget 0 ≤ Kt ≤ Kr allocated to the current time step t.

State transition The state transition in this layer is stochastic, which is a fundamental characteristic
of SSCO problems. Given the current state sIt and the action aIIt from the lower layer, the state sIt+1
is updated according to the following function:

sIt+1 = f(sIt , a
II
t ) + η(sIt , a

II
t ), (2)

where f(sIt , a
II
t ) is a deterministic function that updates the state sIt based on the current action aIIt ,

while η(sIt , a
II
t ) represents the stochastic component, which introduces randomness into the state

transition, thereby capturing the stochastic nature of the environment. For example, in the adaptive
IM problem, there is no deterministic component. Instead, the entire state transition is governed by
the stochastic process η(sIt , a

II
t ), which can be interpreted as the ”activation process” within this

problem.

Reward The total reward depends on the problem of interest. In adaptive IM, it is the total number
of influenced nodes (e.g., active and removed nodes). Then, the immediate reward rI is the increase
in the total reward.

3.2.2 LOWER LAYER MDP

State The state sII is also defined as sII = {X, g}.
Option The option oII can be either 0 or 1, where ”1” represents continuing to select nodes, and
”0” represents not selecting any node and interacting with the environment.

Action Two kinds of actions are defined. Given the current time step t, the action aIIt,j is the node
selected for a sub time step j (e.g., oIIt,j = 1) or just the null action at,∅ (e.g., oIIt,j = 0). And the aIIt
is all the nodes selected in the current time step or the null action at,∅ if no nodes are selected.

State transition The state transition can occur either in a deterministic or stochastic way. If option
oIIt is 1 and the action is node v, we update the state of node v deterministically (e.g., activating node
v). If option o is 0, the agent interacts with the environment as described in the higher layer MDP.

Reward The reward in the lower layer significantly affects the convergence of the model. We first
define the reward rIIt,∅ for the null action at,∅, which means directly interacting with the environment
at time step t. rIIt,∅ depends on the specific problem, and the intuition is to determine the expected
reward when moving to the next day if we do not select any node in the current state. For propagation
problems, we can choose rIIt,∅ = rIt − keff, where keff represents the effective number of nodes in
action aIIt (e.g., number of inactive nodes in aIIt ) that can yield actual gain. For problems without
a propagation process (e.g., TSP, RP), we can simply set this reward to 0. Next, we define the
marginal reward mt,v for node v. We denote the selected nodes in the current sub time step j as
At = {at,v1 , ..., at,vj−1

}. The marginal reward is obtained as follows

mt,v = Rt(s
I
t , At ∪ {at,v})−Rt(s

I
t , At), (3)

where Rt(S,A) is the immediate reward from taking action A in state S. In our experiments, this
reward is estimated by averaging the results of multiple (typically 10) simulations. As a result, the
reward for selecting node v is given by

rIIt,v =
mt,v∑

u∈aII
t
mt,u

(rIt − rIIt,∅). (4)

In this manner, the total reward at each time step for the lower layer will remain consistent with the
higher layer, enhancing the model’s stability.
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3.3 WS-OPTION

Due to the high interdependencies between the learned Q-values across the two policy layers, along
with advantages such as reduced sample complexity, we employ a value-based RL for both layers. In
our framework, the policies of both layers are ϵ-greedy.

Algorithm 1 WS-option: Overall training
1: Initialize experience bufferM1 andM2 for the higher and lower layer, respectively.
2: Initialize Q-networks for both layers.
3: for epoch i = 1, .., N do
4: Sample a Graph G from the distribution D.
5: for episode j = 1 to M do
6: if i ≤ N/2 then
7: Set the flag use fixed higher layer to true.
8: else
9: Set flag use fixed higher layer to false.

10: end if
11: Run an episode with the flag use fixed higher layer (see Algorithm 2).
12: Store transitions (see Algorithm 3).
13: end for
14: Sample a sequential minibatch of the most recent transitions from the replay bufferM1.
15: Train the higher layer using MC methods with sampled transitions.
16: Sample a random minibatch of transitions from the replay bufferM2.
17: Train the lower layer using TD-learning with sampled transitions.
18: end for

Algorithm 2 WS-option: Run episode
1: Initialize the state sI1 and temporary storage T for episode transitions.
2: for step t = 1 to T do
3: if use fixed higher layer is True then
4: oIt ← average budget allocation.
5: else

6: oIt ←
{

randomly selected in the remaining budget,w.p. ϵ1,
argmaxo q

I(sIt , o), otherwise.
7: end if
8: Initialize the set of selected nodes aIIt = {}.
9: for k = 1 to oIt do

10: sIIt,k, o
II
t,k ← state transition(sIt , o

I
t , a

II
t )

11: aIIt,k ←
{

randomly select a node from V \ aIIt ,w.p., ϵ2
argmaxa q

II(sIIt,k, o
II
t,k, a) subject to a /∈ aIIt , otherwise.

12: aIIt ← aIIt ∪ {aIIt,k}
13: end for
14: Execute action aIIt and obtain reward rIt and next state sIt+1.
15: Store the transition (sIt , o

I
t , a

II
t , rIt , s

I
t+1) in the temporary storage T .

16: Update the current state: sIt ← sIt+1.
17: end for

Moreover, as shown from the formulation of the MDPs for both layers, we can see that the Q-functions
of the two layers are highly interdependent. On one hand, the higher-layer option selection will
determine feasible action spaces for the lower-layer node selection; on the other hand, the specific
lower-layer node selection will affect how good the higher-layer’s selected option is. Hence, we
observe that, if we simply adopt the commonly used (double) Q-learning framework [51, 36, 37, 19],
or more essentially off-policy TD learning [46] for both layers, then the Q-values for both layers,
especially the first layer will tend to diverge. This is because of the estimation bias derived from the
deep models (see Appendix C.1) and bootstrapping of TD learning. We can see the result in Figure
2(b). To stabilize the training of both layers, while maintaining computational efficiency, we propose
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the following two designs for our training algorithm, i.e., wake-sleep training and layer-wise learning
method selection. The pseudocode of the training algorithm is shown in Algorithm 1. During each
epoch, a graph is obtained from a certain distribution D (line 4). We divide all epochs into two stages
(lines 6-10), which correspond to the wake-sleep training procedure described in this section. After
we run algorithm 2 and 3, we can use the transitions to train both layers (lines 14-16). Note that
during the training of the higher layer, transistions are sampled sequentially (line 14). Although
the higher-layer policy, based on MC method, is inherently on-policy and does not require stored
transitions, we maintain this to ensure consistency across both layers.

Algorithm 2 shows the process of running episodes. We first get the option (lines 3-6), then choose
node one by one (lines 8-13). Subsequently, we run Algorithm 3 (see Appendix B.1) to store
transitions for training. Algorithm 3 shows how to store transitions, especially for the lower layer.
Since the second layer does not interact with the environment after selecting a single node and suffers
from sparse rewards, we first obtain the marginal rewards for each transition state through simulation
(lines 5-10). To keep the total reward of the lower layer consistent with the higher layer, we scale all
the marginal rewards (lines 12-15), which does not affect the relative Q value of the actions.

3.3.1 WAKE-SLEEP TRAINING

The primary challenge in HRL lies in ensuring stable training and model convergence. Notably,
training both layers together can lead to instability, as the policies of each layer are interdependent
and can interfere with one another. To address this issue, we devise a wake-sleep approach to enhance
training stability. As we will show in Section 3.3.3, this proposed wake-sleep training procedure
is well-aligned with our theoretical analysis. In Figure 2(a), we present the Q value learned by
traditional HRL, where both layers are trained simultaneously from the beginning, and our proposed
WS-option. Then, we will provide the details of this wake-sleep training procedure.

In the sleep stage of this training paradigm, the Q-function of the higher layer is initially frozen
and an average budget allocation strategy is used instead. While more advanced strategies could be
considered, we choose the simplest one to allow the lower layer to approach convergence under the
current high-layer policy. The lower layer’s Q-function is sufficiently trained along with the average
budget allocation strategy in this stage. Meanwhile, the high layer’s Q-function will be pre-trained
offline using the trajectories of the average strategy. In the subsequent wake stage, both layers are
trained online simultaneously, allowing for the fine-tuning and optimization of their interdependent
policies, which ultimately lead to convergence.

3.3.2 LAYER-WISE LEARNING METHOD SELECTION

MC methods provide unbiased estimates by calculating the expected value via a complete trajectory,
offering reliable and accurate results when the sample size is sufficient. In contrast, TD methods
may reduce the accuracy of the Q estimation if errors occur during the intermediate process, known
as error propagation. Additionally, in practice, TD methods often result in the overestimation of Q
values. Hence, using MC methods to provide more reliable Q value estimates for the higher layer can
enhance the model stability. Our experimental results show that this trick, combined with wake-sleep
training, is one of the key components that makes the HRL training successful. Figure 2(b) shows the
Q values learned using MC and TD methods. The Q values from TD methods are monotonic, while
those from MC methods are concave.

On the downside, MC methods are usually more data-hungry because they have to wait until
the end of a trajectory to get a training sample. Given that the lower-layer Q-learning (which is
essentially a subtask that uses RL to solve one-shot CO problems) has been demonstrated to be
reliable [24, 39, 14, 5, 26, 6], we choose the off policy TD-learning (Q-learning) framework for the
lower-layer Q-function update. TD-learning has a faster convergence speed compared to MC methods.
When training in the sleep stage, the rapid feedback of the TD method can help the lower layer
converge faster, so that the whole model will be better initialized with more optimized parameters.
This in turn will accelerate the co-training in the wake stage.

3.3.3 CONVERGENCE ANALYSIS

For completeness of our study and to offer intuition for our framework, we present a concise
theoretical analysis of the algorithm’s convergence. We first discuss the convergence of the intra-
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Figure 2: Q-values learned for the AIM problem (T = 10,K = 20).

option policy and give Theorem 1. Then, we show the convergence of the option policy and give the
Theorem 2. The proofs are provided in Appendix A.5.1 and Appendix A.5.2, respectively.
Theorem 1. (Intra-option policy convergence). In our WS-option framework, given any Markov
transition (sτ , oτ , aτ , rτ , sτ+1, oτ+1), the Q-value function qII(sτ , oτ , aτ ) converges to the optimal
Q-value function qII∗ (sτ , oτ , aτ ) with probability 1, assuming that the higher-layer policy is fixed.
Theorem 2. (Option policy convergence). In our WS-option framework, given any state-option pair
(st, ot), the Q-value function qI(st, ot) converges to the optimal Q-value function qI∗(st, ot) with
probability 1, assuming that for any given higher-layer policy, the lower-layer policy always provides
the corresponding conditionally optimal response.

As a result, the convergence of the hierarchical framework is guaranteed by the convergence of
both layers. Although the interaction between layers will have some effects, we use the wake-sleep
procedure instead. As illustrated in Figure 3, after the sleep stage, we can get an optimal policy
πII conditioned on the higher layer’s policy πI . Notably, even when the higher layer policies differ,
the nature of the node selection task leads to lower layer optimal policy πII being similar to any
conditional optimal policy π′II . This is analogous to the Stackelberg game setting, where the follower
can always give best response. In this case, the convergence of the total framework can be achieved.
Notably, our analysis is just limited to the tabular case.

Higher Layer Given a policy 𝜋𝐼 

Lower Layer

Global optimal policy (𝜋∗𝐼 , 𝜋∗𝐼𝐼)

Close to

Theorem 1 Theorem 2 Stackelberg 

game

Conditioned optimal policy 𝜋𝐼𝐼 
Optimal policy 𝜋′𝐼𝐼 conditioned 

on π′𝐼 

Sleep Wake

Figure 3: Wake-sleep training procedure

4 EXPERIMENTAL RESULTS

4.1 SSCO PROBLEM INSTANCES

In this article, we examine two broad classes of problems: the propagation problem (high stochasticity)
and the route planning problem (low stochasticity). For the propagation problem, we use an adaptive
version of the classic IM problem. For the route planning (RP) problem, we consider a model tailored
for travel route planning. Notably, instead of showing the standard deviation of test results, we
perform two-sample t-tests to show the effectiveness of our framework in SSCO scenarios.
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4.2 COMPARISON WITH BASELINES

Baselines To evaluate the effectiveness of our approach, we compare it against appropriate baselines
for each problem, measuring the cumulative reward obtained by various methods. Each baseline is
named in the form of A-B, where A is the higher-layer algorithm, and B is the lower-layer algorithm.
For the AIM problem, we use the baselines mentioned in Tong et al. [48]: average policy, static policy,
and normal policy at the high level. The static policy divides the time period T into d cycles, allocating
the same resources only on the first day of each cycle. The normal policy allocates all resources at the
beginning. At the lower level, we use a degree-based greedy strategy and a well-designed score-based
strategy. The score for each node v is defined as sv =

∑
u∈Nin(v)

p(u, v), where Nin(v) denotes the
set of inactive nodes among the neighbors of v, and p(u, v) is the probability that u can successfully
activate v. This method takes into account the characteristics of the problem and uses expected values
to score each node, showing strong performance in our experiments. For the RP problem, we use
genetic algorithms (GA) and greedy algorithms. We train and test on graphs of the same size here.
The results are shown in Tables 1-2, where T and K are chosen according to Tong et al. [48].

Table 1: Experimental results for AIM, n = 200. All cases have p-values ≤ 0.05.
Method T,K = 10, 10 T,K = 10, 20 T,K = 10, 30 T,K = 20, 10

WS-option 76.00 118.56 129.06 80.95
average-degree 67.92 104.54 122.50 72.18
average-score 74.36 116.10 128.29 80.31
normal-degree 69.28 101.50.34 109.39 63.47
normal-score 75.05 111.89 118.78 70.68
static-degree 70.02 105.25 122.37 70.57
static-score 74.81 118.13 128.01 71.68

Table 2: Experimental results for RP, n = 100. All cases have p-values ≤ 0.05.
Method T,K = 10, 10 T,K = 10, 20 T,K = 10, 30 T,K = 20, 10

WS-option 7.46 12.86 18.57 7.52
greedy 6.29 12.02 15.68 6.73
GA 6.79 11.65 15.70 6.93

As shown in Tables 1-2, our method performs consistently well across various settings. As expected,
our method outperforms the baseline methods in the AIM problem, which emphasizes structural
information about the graph as well as feedback processing of stochasticity (whether the node is
successfully activated or not). In our experiments, we use simple graph neural networks. In fact,
employing more advanced graph neural networks could further improve the performance of our
algorithm, but graph embedding is not the focus of our study. For the RP, our algorithm also shows
advantages. The graph of RP is essentially a fully connected graph, which does not emphasize the
structural information of the graph but focuses more on the distance between nodes. Nonetheless, the
primary advantage of our algorithm is its ability to be applied to larger graphs without the need for
retraining after a single training, which significantly reduces computational overhead compared to
traditional algorithms. Additionally, cumulative reward during training for AIM problem is provided
in Figure 5 of Appendix D.1.

4.3 ASSESSING THE LEARNED POLICIES

We now assess the learned budget allocation and node selection policies using the AIM problem.
By fixing one layer’s policy, we compare the cumulative rewards obtained by only the other layer,
enabling us to independently assess the policy of each layer.

To evaluate the higher layer, we fix the lower layer using its learned policy and vary the budget
allocation policy. Conversely, to evaluate the performance of the lower layer, we fix the higher layer
using the average budget allocation policy and vary the node selection policy. As shown in Table
3, our algorithm performs well even when applied to a single layer. Both the node selection and

9



Published as a conference paper at ICLR 2025

Table 3: Cumulative rewards when varying one layer’s policy while the other layer remains fixed. All
cases have p-values ≤ 0.05.

lower layer fixed (using the learned policy)
Setting WS-option average normal static

T,K = 10, 10 76.79 71.45 75.27 74.85
T,K = 10, 20 127.51 126.35 120.26 125.46

higher layer fixed (using the average policy)
Setting WS-option degree score

T,K = 10, 10 71.45 62.55 69.15
T,K = 10, 20 126.35 118.75 125.02

the learned budget allocation strategies yield better results compared to the baseline approach. The
learned budget allocation policy is showed in Appendix D.2, Figures 6 to 8.

4.4 GENERALIZATION TO LARGER GRAPHS

Most excitingly, our algorithm generalizes well to larger graphs. This means that models trained on
small graphs can be effectively applied to larger ones. The reason for this generalization ability lies
in the framework we use, which does not include any parameters related to graph size or number of
nodes. This allows us to use the same parameters for graphs of different sizes.

Table 4: AIM: Generalization to larger graphs. All cases have p-values ≤ 0.05.
200 400 700 1000

WS-option 120.88 176.13 204.87 221.16
average-degree 110.18 144.93 155.85 167.58
average-score 119.80 158.98 165.24 176.31
normal-degree 103.22 152.46 186.01 210.57
normal-score 106.47 166.45 199.41 220.81
static-degree 109.62 155.08 178.66 198.44
static-score 118.86 171.91 188.44 204.16

We train the model on graphs with 50-100 nodes with T = 10,K = 20. Table 4 and Table 7 (see
Appendix D.3) present the results of our tests on different graph sizes. As shown, even though the
model was trained on small graphs, it still exhibits excellent performance on larger graphs. This
result demonstrates that our algorithm has good scalability and generalization ability to effectively
deal with large-scale graph structure problems.

5 CONCLUSION

We propose an option-based HRL framework for solving complex SSCO problems. The core of
our approach is to use the wake-sleep training procedure and layer-wise learning method selection
to make the system more stable without interfering with each other, as well as to facilitate our
learning process by giving a clear definition of MDPs of two layers. Through extensive experimental
evaluations, we demonstrate the strong performance of our algorithm in solving the SSCO problem,
its ability to learn effective budget allocation and node selection policies, and its strong generalization
to larger graphs. However, a notable limitation of our algorithm is that each new problem needs a
new graph embedding technique, which adds complexity to the framework’s implementation across
different scenarios. We leave the investigation of model-agnostic graph embedding techniques for
RL-based solutions to SSCO as future work, potentially borrowing ideas of recent advancements on
graph foundation models [33].
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A THEORETICAL INSIGHTS

A.1 HIERARCHICAL LEARNING FOR BI-LEVEL OPTIMIZATION

Based on the problem formulation in equation 1, we provide a high-level insight into the nature of
this problem, which motivates the use of HRL. Specifically, the SSCO problem can be reformulated
as a bi-level optimization problem:

max
πh

J(πI , πII∗(πI)) (5)

subject to πII∗(πI) ∈ argmax
πI

J(πI , πII) (6)

where J =
∑T

t=1 rt(St), πI = {Kt}, and πII = {St}. Here, πI is constrained by equation 1b, and
πII satisfies the constraints in equation 1c.

The formulation highlights that the SSCO problem inherently exhibits a bi-level optimization structure.
The higher-level policy πI determines the budget allocation strategy (e.g., {Kt}), while the lower-
level policy πII selects the corresponding subsets (e.g., {St}) based on the higher-level decisions.

Given this hierarchical dependency, it is natural and intuitive to employ a hierarchical learning
algorithm such as HRL to address such problems effectively.

In contrast, traditional single-agent RL methods struggle with this bi-level optimization problem due
to the following limitations:

• Hierarchical Dependency: Single-agent RL lacks the structure to handle the interdependent
objective, as the lower-level policy πII directly depends on higher-level decisions πI .

• Exploration Efficiency: HRL separates exploration across two tractable levels, improving
learning effiency compared to single-agent RL’s flat exploration approach, which is one of
the HRL’s greatest advantages [52].

• Scalability and Interpretability: Optimizing the joint action space of both levels in single-
agent RL is computationally intractable. HRL, by decoupling the problem into manageable
subproblems, offers a scalable, interpretable, and modular framework for solving complex
hierarchical tasks.

A.2 INTUITION BEHIND WAKE-SLEEP OPTION FRAMEWORK

The core idea for solving this bi-level optimization problem is to decompose it into two separate
single-level optimization problems.

When the lower layer provides a conditionally optimal solution, denoted as πII∗(πI), the bi-level
problem reduces to a single-layer problem, which corresponds to the objective defined in equation 5.
In this context, the task is just to find the optimal policy for the higher layer. Conversely, when
the higher-layer policy is fixed, the problem becomes solving the sub-optimization objective in
equation 6, which is to find the corresponding conditionally optimal lower-layer policy. Building
on this decomposition, the framework iteratively refines the higher-layer policy by alternating
between the two optimization processes. Specifically, a higher-layer policy is first provided, and
the corresponding conditionally optimal lower-layer policy is determined. This iterative procedure
continues until the global optimal solution is achieved.

However, in the context of the SSCO problem, the role of lower layer is to perform node selection,
while the higher layer only adjusts the termination condition. Due to the nature of this task, we
claim that the conditionally optimal lower-layer policy remains similar across different higher-layer
policies πI . Given this, the wake-sleep procedure is employed. During the sleep stage, the lower
layer determines a near-optimal policy. Subsequently, the two layers are trained jointly during the
wake stage. Since the lower layer has already converged to a close-to-optimal policy, the joint training
further refines both the higher-layer policy and the lower-layer policy, ensuring that the global optimal
solution is achieved.
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A.3 SIMPLIFICATION OF OPTIONS IN THE LOWER LAYER

In this section, we justify our simplification of options and provide a deeper understanding of the
option framework within our HRL approach. First, we revisit the definition of an option o in 3.1. In
the traditional option framework, an option o is defined as a tuple (I, πII , β), where:

• I is the initiation set, which specify the states where the option can be initialized.
• πII is the lower-policy that the agent follows while the option is being executed.
• β is the termination condition that determines when the option should terminate.

Options allow the agent to execute temporally extended actions, thereby enabling more efficient
exploration and decision-making by abstracting lower-level actions into higher-level policies.

A.3.1 WHY SIMPLIFY OPTIONS?

In our specific bi-level optimization problem, the primary role of the option in the lower layer is to
determine when the lower-level policy πII should terminate its node selection process. Specifically,
the higher-level budget allocation Kt implicitly decides the number of nodes the lower layer should
select before terminating. Given this context, we simplify options due to the following reasons.

Redundant Information and Enhanced Interpretability The numerical value of the budget Kt

does not provide additional useful information beyond determining the number of node selections.
Therefore, conveying the exact budget value to the lower layer is unnecessary and does not contribute
to the termination decision. By representing options as binary indicators, we clarify whether the
lower layer should continue or terminate, enhancing the interpretability of the policy.

Improved Learning Efficiency Reducing the option to a binary indicator allows the lower layer
to focus solely on a straightforward termination condition, without needing to interpret specific
budget values. This simplification minimizes the complexity of the learning task, leading to faster
convergence and more stable learning processes.

Therefore, we simplify the option passed to the lower layer to a binary indicator:

• oIIt = 1: Indicates that the lower layer should continue selecting nodes.
• oIIt = 0: Indicates that the lower layer should stop selecting nodes and interact with the

environment.

A.3.2 JUSTIFICATION OF BUDGET IRRELEVANCE

It is important to note that the specific numerical value of the budget Kt does not inherently affect
the termination condition beyond determining the number of node selections. The budget serves as a
constraint that limits the range of the lower layer’s actions but does not need to be explicitly taken as
part of the option. By abstracting the budget into a binary termination signal, we retain the essential
functionality required for effective decision-making without introducing additional complexity.

Overall, this design choice strikes a balance between simplicity and functionality, leveraging the
hierarchical structure of our problem to enhance learning efficiency and policy interpretability.

A.4 LOWER-LAYER REWARD DESIGN

The reward structure in the lower layer is a critical component of the WS-option framework, as it
directly influence both the stability and convergence of the model. Proper design of the reward ensures
that the hierarchical optimization aligns seamlessly across layers, mitigating potential instability
caused by sparse or inconsistent feedback signals.

A.4.1 CHALLENGES IN LOWER-LAYER REWARD DESIGN

The task of the lower layer is to select nodes based on the budget allocated by the higher layer.
However, if the lower layer were to select all Kt nodes in a single step, the size of the action
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space would grow combinatorially as
(
N
Kt

)
, where N is the total number of (available) nodes. This

combinatorial explosion makes the optimization process computationally infeasible for large N and
Kt. Therefore, we adopt a sequential selection approach where the lower layer selects one node
at a time and repreat this process for Kt times. This strategy effectively reduces the action space
size from

(
N
Kt

)
to N per selection step, significantly enhancing the tractability of the optimization

problem.

However, this sequential approach introduces a new challenge: sparse rewards. Specifically, the
environment only provides feedback after the final node in the sequence has been selected, resulting
in delayed and aggregate reward signals. Such delayed feedback make it difficult for the model to
identify the contribution of individual node selections to the overall reward.

A.4.2 NORMALIZATION OF MARGINAL REWARD

We normalize marginal rewards to ensure that the total reward of the lower layer for each time step t
is the same as the reward of the higher layer, which is∑

u∈aII
t

rIIt,u + rIIt,∅ = rIt = R(sIt , o
I
t , a

II
t ). (7)

At each time step, the reward R(sIt , o
I
t , a

II
t ) is determined jointly by both the higher-layer option oIt

and the lower-layer action aIIt . Since both layers share the same reward and objective, it is essential
that the rewards remain aligned.

When the lower-layer actions are decomposed into sequential sub-actions (e.g., selecting one node at
a time), the individual rewards for each sub-action must sum up to the total reward R(sIt , o

I
t , a

II
t ).

Without normalization, the reward distribution across these sub-actions could deviate, leading to
inconsistencies between the lower layer’s objective and the higher layer’s global reward signal. As
a result, by normalizing the marginal reward, we ensure: 1) reward consistency. The total reward
for the lower layer matches the original reward defined by the hierarchical framework, maintaining
coherence between the two layers; and then 2) objective alignment. Both the higher layer and lower
layer optimize the same objective, preserving the shared purpose of achieving the overall framework’s
goals.

A.5 CONVERGENCE ANALYSIS

A.5.1 PROOF OF THEOREM 1

Theorem. (Intra-option policy convergence). In our WS-option framework, given any Markov
transition (sτ , oτ , aτ , rτ , sτ+1, oτ+1), the Q-value function qII(sτ , oτ , aτ ) converges to the optimal
Q-value function qII∗ (sτ , oτ , aτ ) with probability 1, assuming that the higher-layer policy is fixed.

Proof. The update formula of intra-option Q-value in tabular form is as follows:

qIIn+1(st,τ , ot,τ , at,τ ) =

{
rt,τ + γmax

a
qIIIn (st,τ+1, ot,τ+1, a), If ot,τ > 0 and at,τ ̸= at,ϕ,

rt,τ + γqI(st+1, ot+1), otherwise.
(8)

According to Theorem 1 from [21], we need to show the update operator is a contraction mapping.
For ot,τ > 0 and at,τ ̸= at,ϕ,

|qIIn+1(st,τ , ot,τ , at,τ )− qII∗ (st,τ , ot,τ , at,τ )|
=|rt,τ + γmax

a
qIIn (st,τ+1, oτ+1, a)− rt,τ − γmax

a
qII∗ (st,τ+1, ot,τ+1, a)|

=γ|max
a

qIIn (st,τ+1, ot,τ+1, a)−max
a

qII∗ (st,τ+1, ot,τ+1, a)|

≤γmax
a
|qIIn (st,τ+1, ot,τ+1, a)− qII∗ (st,τ+1, ot,τ+1, a)|

(9)

For the other case,

|qIIn+1(st,τ , ot,τ , at,τ )− qII∗ (st,τ , ot,τ , at,τ )| = |rt,τ + γqI(st+1, ot+1)− rt,τ − γqI∗(st+1, ot+1)|
(10)
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Note that qI(st+1, ot+1) = max
a

qII(st+1, ot+1, a). Therefore, we have

|qIIn+1(st,τ , ot,τ , at,τ )− qII∗ (st,τ , ot,τ , at,τ )|
=γ|max

a
qIIn (st+1, ot+1, a)−max

a
qII∗ (st+1, ot+1, a)|

≤γmax
a
|qIIn (st+1, ot+1, a)− qII∗ (st+1, ot+1, a)|

(11)

So we prove the convergence of the intra-option policy.

A.5.2 PROOF OF THEOREM 2

Theorem. (Option policy convergence). In our WS-option framework, given any state-option pair
(st, ot), the Q-value function qI(st, ot) converges to the optimal Q-value function qI∗(st, ot) with
probability 1, assuming that for any given higher-layer policy, the lower-layer policy always provides
the corresponding conditionally optimal response.

Proof. The Q-value of the higher layer is updated by:

qIt+1(st, ot) = qIt (st, ot)− αt(st, ot)(q
I
t (st, ot)− gt), (12)

where gt is the return estimated by MC methods. Again, according to the Theorem 1 from [21],
to establish the convergence, we need to show that E[qIt (st, at) − gt] = 0. Under the assumption
that for any given higher-layer policy, the lower-layer always provides the best-response policy, the
lower-layer policy remains fixed and conditionally optimal at each time step t. at each time step t, the
lower policy is fixed and the conditionally optimal. Consequently, the expected value of the observed
return gt matches the Q-value estimate qIt (st, ot). Therefore, the condition E[qIt (st, ot) − gt] = 0
is satisfied. As a result, the Q-value function qI converges to the optimal option Q-value qI∗ with
probability 1.

A.5.3 INTERACTION AND CONVERGENCE OF HIERARCHICAL LAYERS

The theorems presented above establish the convergence of two separate single-level optimization
problems, as discussed in Section A.2. However, ensuring the convergence of the entire framework
for bi-level optimization remains challenging due to the inherent interdependence between the two
layers.

To address this, we alternate between the two optimization processes and further use our WS option
framework, which effectively decouples their dependencies during training. Specifically, the higher-
layer policy provides guidance to the lower-layer policy, which then adapts to the given conditions
and converges to its conditionally optimal response. Once the lower layer converges, the higher-layer
policy is refined based on the updated performance metrics.

This iterative approach leverages the individual convergence of each layer, as proven in Theorems
in A.5.1 and A.5.2, to ensure the overall framework converges. By combining the independent
convergence of the two layers, the framework achieves global optimization for the bi-level problem.
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B ALGORITHM DETAILS

B.1 ALGORITHM 3

Algorithm 3 WS-option: Store transitions
1: for each transition (sIt , o

I
t , a

II
t , rIt , s

I
t+1) in T do

2: Compute the gain gt =
∑T

i=t γ
i−1rIi .

3: Store the transition (sIt , o
I
t , gt) in the replay bufferM1.

4: Set sIIτ ← sIt and oIIτ ← oIt .
5: for each node u in the aIIt do
6: sIIτ+1, o

II
τ+1 ← state transition(sIIτ , oIIτ , u)

7: Estimate the marginal reward mII
τ by running 10 simulations.

8: Store the intermediate transition (sIIτ , oIIτ , u,mII
τ , sIIτ+1, o

II
τ+1) for later scaling.

9: Update sIIτ ← sIIτ+1 , oIIτ ← oIIτ+1.
10: end for
11: for each stored intermediate transition (sIIτ , oIIτ , u,mII

τ , sIIτ+1, o
II
τ+1) do

12: Scale the reward rIIτ =
mII

τ∑
mII

k

(rIt − rIIt,∅).

13: Store the transition (sIIτ , oIIτ , u, rIIτ , sIIτ+1, o
II
τ+1) in the replay bufferM2.

14: end for
15: end for

C IMPLEMENTATION DETAILS

C.1 NETWORK ARCHITECTURE
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Figure 4: Network architecture

The network architecture consists of two primary components: the higher layer network and the lower
layer network, as illustrated in Figure 4. There are two inputs: the node feature X and the context c.
We use context c to represent non-node feature information, such as global information g and the
option oI , which is a one-dimensional vector. The basic idea is to use graph network layers to get
node embeddings. Then, we concatenate the node embeddings with the context embedding, which
are used as the input of linear layers.

Higher layer network with action-in This network is used for estimating qI(sI , oI). It is worth
noting that we adopt an action-in network structure, which differs from the traditional action-out
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structure in typical Q-learning frameworks like DQN [36, 37]. In the action-in structure, actions are
also taken as inputs. In our study, this means the option (budget) is an input. We choose the action-in
structure for two main reasons: first, it can capture the properties of a particular state-action pair more
accurately because of the ability to embed the action into potential features. More importantly, since
the size of the budget is not used as a parameter of the network (i.e., the number of output nodes),
this approach allows for more powerful generalization ability of the model, which is not possible
with the action-out structure.

For the network architecture, we use graph network layers to obtain node embeddings h. An average
readout function is then applied to get the graph embedding h. After concatenating this with the
context embedding, we use linear layers to compute qI(sI , oI).

Lower layer network with action-out The lower layer network adopts a traditional ”action-out”
structure to estimate qII(sII , oII , aII). After obtaining the node embeddings h through graph layers,
we concatenate each node embedding hi with the context embedding c (so we need to expand it first).
Subsequently, we average the node embeddings to get the graph embedding, which is used to denote
the null action.

Details of the network In our study, we use different architectures for two problems. For the
AIM problem, we employ the S2V structure in [24] with T = 3 to obtain node embedding and
graph embedding (64-dimensional) for the higher layer. Subsequently, we use a linear layer to get
the embedding of the option (64-dimensional), which is also called context embedding. We then
concatenate the graph embedding with the context embedding and apply three linear layers to get the
Q-value. For the lower layer, we also use S2V structure but with T = 1 to get both node embedding
and graph embedding (64-dimensional). And using two linear layers for node embedding and graph
embedding, respectively, to estimate the Q-value of all action (n nodes and a null action). To tackle
the RP problem, we use attention layers due to their effectiveness in capturing the features of distances
and benefits associated with nodes. For the higher layer, three attention layers with an embedding size
of 64 are used to get the node and graph embeddings. Additionally, for this problem, the context is the
option, the current node and the starting node. We use a linear layer to get the option embedding and
combine it with node embeddings of the current node and starting node to get the context embedding
and concatenate them with the graph embedding. The combined embedding is then passed through
three linear layers to estimate the Q-value. For the lower layer, a single attention layer is used to
get the node embedding (64 dimensional). The context embedding is the same as the higher layer.
Notably, the embedding of the current node is employed as the representation for the null action
instead of the graph embedding. Finally, three linear layers are applied to get the Q-value.

C.2 ADAPTIVE INFLUENCE MAXIMIZATION (AIM)

AIM is an extension of IM [23], which aims to progressively select seed nodes in dynamic and
uncertain environments to maximize the spread of information within a social network. AIM has
diverse applications in fields such as viral marketing, information dissemination, and public health.
In this paper, we use the Independent Cascade (IC) model as the information propagation model.

The problem is modeled on a directed graph G = (V,E), where V and E are nodes and edges,
respectively. Each node can be either active or inactive. Once a node u becomes active (either by
being selected as a seed or being activated by other nodes), it will attempt to activate each of its
inactive neighbors v with a probability p(u, v) on the next day and cannot activate nodes afterwards.
The probability p(u, v) is constant and is set to 1

d−(v) in our model, where d−(v) denotes the indegree
of node v. Initially, all nodes are inactive, and before each day starts, we can select some seed nodes
to activate. We assume a total budget K (i.e., the total number of nodes that can be selected) and
study how to allocate the seed nodes to maximize the influenced nodes within the time constraint of
T days [48].

The MDP formulation of AIM is described in the following. The datasets used in the experiments are
randomly generated using the erdos renyi graph() function from Python’s NetworkX library,
with a probability of 0.01.

MDP formulation For the higher level, we denote the state of nodes as Xt ∈ {0, 1}|V |×3. The
state of each node is represented as a one-hot vector, indicating that the node is in one of three
possible states: inactive, active (able to activate other nodes), or removed (active but unable to activate

22



Published as a conference paper at ICLR 2025

other nodes). What’s more, the global information here is the remaining budget. The option is the
budget allocated to the current time step. The reward is the increase in the number of influenced
nodes. For the state transition, for example, given the current state sIt and action aIIt (selected nodes)
from the lower layer, we first change the state of selected nodes aIIt . For each node v ∈ aIIt ,

Xv
t = [0, 1, 0]. (13)

Now we consider the interaction with environment. Assume the set of current active nodes is Ca,t
and the set of their inactive neighbors is Cina,t. Then, for each node v ∈ Cina,t, the probability of
being activated is

P (Xv
t = [0, 1, 0]) = 1−

∏
u∈N (v)∩Ca,t

(1− p(u, v)). (14)

where N (v) is the set of neighbors of node v, and p(u, v) is the probability that node v is activated
by node u. Then, we update the state of newly activated nodes A as in equation 13.

For the lower level, the state remains consistent with the higher level but includes the option chosen
by the higher level. The action is to select a node. The immediate reward is defined in Equation 4.
The state transition occurs by simply setting the selected node to an active state.

C.3 ROUTE PLANNING (RP)

RP includes a broad class of optimization problems that seeks to find an optimal route to satisfy
specific constraints and objectives. This problem is applicable to fields such as logistics, travel
planning, and vehicle routing. In this paper, we focus on a travel planning scenario with N cities.
The traveler must select K cities to visit, starting from a specific city. Each city c provides a profit
pc, but the combined profit for visiting multiple cities in one day is a submodular function of these
individual profits. The profit of each city changes dynamically over time and resets to 0 once visited.
There is a maximum daily travel distance dmax, with penalties for exceeding it. The goal is to visit
the selected cities within T days and return to the starting point, maximizing overall travel profits.

Specifically, the initial profit of each city follows from a uniform distribution U(0.5, 1) and updates
as follows:

pc,t+1 = pc,t + ξc,t+1, for t ≥ 0, (15)
where ξc,t+1 ∼ U(−0.05, 0.05). For a set of cities C, the combined profit in one day is defined as

f(C) =
∑
c∈C

pc − η(max(|C| − 1, 0))2, (16)

where η is a coefficient set to 0.1 in our experiments. Exceeding the maximum daily travel distance
dmax results in a penalty proportional to the excess distance (we choose 5). The dmax we set is
1.5maxi,j dij , where dij is the distance of city i and j. The datasets used in this problem (coordinates
of the city) are also randomly generated using the random.rand() function from Python’s Numpy
library with a scale of 100.

MDP formulation For the higher level, the state includes: the coordinates of each city, their profits,
the current city, and the starting city. The option is the same as in the AIM problem. The reward is
the combined profits of the selected cities at the current time step. The state transition involves the
update of profits as described in Equation 15 and the change of the current city.

For the lower level, the state remains consistent with the higher level but also includes the option
chosen by the higher level. The action is to select a city. The marginal reward is simply the profit of
the selected city, and the immediate reward can be obtained as described in Equation 4. Note that
there is no propagation process, and the expected profit of each city does not change. Therefore, we
can set rIIt,∅ to 0. The state transition only involves the change in the current node and is deterministic.

The definitions of MDPs for these two problems are also shown in Table 5, and we will use the
framework proposed in this paper to address these problems.
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Table 5: MDPs for AIM and RP problems
Problem Layer State Option/Action Reward

AIM Higher active and inactive choose a budget k number of new active nodes
Lower active and inactive, option select a node scaled marginal reward of choosing a node

RP Higher coordinates, profits choose a budget k combined profit of k cities
Lower coordinates, profits, option select a city scaled profit

C.4 EXPERIMENT HYPER-PARAMETER

To ensure the stability of the learning process in both problems, we employ Double Deep Q-Networks
with an update frequency of 10 episodes. The ϵ-greedy strategy we use is initialized with ϵ = 0.9 and
decays by a factor of 0.98 after each single training, with a minimum threshold of 0.1. We train each
model for 20 epochs and 10 episodes.

All experiments on two COPs are implemented in Python and conducted on two machines. One is
NVIDIA GeForce RTX 4090 GPU and Intel 24GB 24-Core i9-13900K. The other is NVIDIA V100
GPU and Inter 256 GB 32-Core Xeon E5-2683 v4.

Table 6: Experiment hyper-parameters for both problems
Parameter AIM RP

Discount factor (γ) 0.99 0.99
Learning rate (higher-layer) 10−3 10−2

Learning rate (lower-layer) 10−4 10−4

Batch size 32 32
DDQN update frequency 10 episodes 10 episodes

Initial ϵ in ϵ-greedy 0.9 0.9
Decay factor for ϵ 0.98 0.98

Minimum ϵ threshold 0.1 0.1
Epochs 20 20

Episodes 10 10

Hardware NVIDIA GeForce RTX 4090, Intel 24GB 24-Core i9-13900K,
NVIDIA V100, Intel 256GB 32-Core Xeon E5-2683 v4

C.5 USING T-TEST FOR EVALUATION

To evaluate the performance of our model, we use a t-test rather than standard deviation. This
approach is particularly suitable given the presence of both aleatoric and epistemic uncertainties.
Typically, we conduct multiple experiments to calculate the mean and standard deviation. Through
this process, the epistemic uncertainty—arising from limited data—can be mitigated according to
the law of large numbers. However, aleatoric uncertainty, which stems from inherent stochasticity
in the environment, is irreducible and contributes to natural variability. Consequently, the standard
deviation in such scenarios primarily reflects aleatoric uncertainty. In our stochastic environment,
this metric alone provides limited insight into the true performance of the model.

D ADDITIONAL RESULTS

D.1 CUMULATIVE REWARD

D.2 RESOURCE ALLOCATION

Figure 6– 8 shows the budget allocation for AIM problem. The last three days have been ignored due
to none resource allocation.
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Figure 5: Cumulative reward during training for AIM T = 10,K = 20

1 2 3 4 5 6 7
Time Steps

0

1

2

3

4

5

Bu
dg

et
 A

llo
ca

tio
n

Policy 1 (Reward: 83.9)
Policy 2 (Reward: 99.29)
Policy 3 (Reward: 97.29)
Policy 4 (Reward: 51.51)
Average Reward: 76.79

Figure 6: Budget allocation for T = 10,K = 10
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Figure 7: Budget allocation for T = 10,K = 20

Table 7: RP: Generalization to larger graphs. All cases have p-values ≤ 0.05.
200 400 700 1000

WS-option 14.45 13.48 14.49 14.23
greedy 12.41 10.74 11.37 12.04
GA 12.62 10.96 11.37 11.77
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Figure 8: Budget allocation for T = 10,K = 30

D.3 GENERALIZATION TO LARGER GRAPHS

D.4 EVALUATION ON THE REAL-WORLD DATA

Real-world datasets often exhibit certain patterns, such as clustering characteristics. These patterns
are easier for our RL-based algorithm to recognize, which can, in turn, achieve even better results. To
demonstrate this, we evaluate our model on power2500 dataset, which has 2500 nodes.

Method T=10, K=20

WS-option 496.37
average-degree 314.49
average-score 317.16
normal-degree 449.30
normal-score 462.54
static-degree 350.84
static-score 393.10

Table 8: Performance comparison of methods on the power2500 dataset (T=10, K=20).

The results in Table 8 show that our RL-based algorithm (WS-option) significantly outperforms
baseline methods, especially under scenarios characterized by clustering patterns. This demonstrates
the model’s capability to exploit structural properties in real-world datasets.

D.5 ABLATION STUDY FOR SLEEP STAGE WITH DIFFERENT TRAINING TIME

Method T=10, K=20

WS-option (sleep with 1/2 N ) 118.56
WS-option (sleep with 1/3 N ) 104.84
WS-option (sleep with 2/3 N ) 118.59
average-degree 104.54
average-score 116.10
normal-degree 101.50
normal-score 111.89
static-degree 105.25
static-score 118.13

Table 9: Performance comparison under different training time for the sleep stage (T=10, K=20).

Note that we use the same random seed as in 4.2. From the results, we observe that ensuring the
lower layer converges during the sleep stage is crucial. Specifically, when the model trains with 1

2N
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or 2
3N , the performance is nearly identical, indicating sufficient convergence. In contrast, training

with 1
3N leads to significantly degraded performance, demonstrating that insufficient convergence in

the lower layer undermines the overall results.

D.6 ABLATION STUDY FOR SIMPLIFIED OPTION IN THE LOWER LAYER

The experimental results for evaluating the effect of simplifying the option in the lower layer are
presented in Table 10. We observe that using a simplified option achieves slightly better performance
compared to the non-simplified version (118.56 vs. 116.37). This shows that while the non-simplified
option can still yield good results with sufficient iterations, it requires more training for agents to
accurately identify termination conditions. Specifically, termination occurs only when the budget
equals 0; when the budget is greater than 0, the behavior remains the same across methods.

Method T=10, K=20

WS-option 118.56
WS-option (non-simplified option) 116.37
average-degree 104.54
average-score 116.10
normal-degree 101.50
normal-score 111.89
static-degree 105.25
static-score 118.13

Table 10: Ablation study results for simplified options in the lower layer (T=10, K=20).
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